Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 573(7772): 108-111, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462777

RESUMO

Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere1. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe2. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe3, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results-arising from the most complete database of European flooding so far-suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century4,5, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management.


Assuntos
Mudança Climática/estatística & dados numéricos , Inundações/estatística & dados numéricos , Rios , Mudança Climática/história , Europa (Continente) , Inundações/história , Inundações/prevenção & controle , Mapeamento Geográfico , História do Século XX , História do Século XXI , Chuva , Estações do Ano , Fatores de Tempo
2.
Environ Sci Technol ; 50(17): 9187-96, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27448116

RESUMO

Nitrate loads and corresponding dual-isotope signatures were used to evaluate large scale N dynamics and trends in a river catchment with a strong anthropogenic gradient (forest conservation areas in mountain regions, and intensive agriculturally used lowlands). The Bode River catchment with an area of 3200 km(2) in the Harz Mountains and central German lowlands was investigated by a two years monitoring program including 133 water sampling points each representing a subcatchment. Based on discharge data either observed or simulated by the mesoscale hydrological model (mHM) a load based interpretation of hydrochemical and isotope data was conducted. Nitrate isotopic signatures in the entire catchment are influenced by (I) the contribution of different nitrogen sources, (II) by variable environmental conditions during the formation of nitrate, and (III) by a minor impact of denitrification. For major tributaries, a relationship between discharge and nitrate isotopic signatures is observed. This may in part be due to the fact, that during periods of higher hydrologic activity a higher wash out of isotopically lighter nitrate formed by bacterial nitrification processes of reduced or organic soil nitrogen occurs. Beyond that, in-stream denitrification seems to be more intense during periods of low flow.


Assuntos
Nitrogênio , Rios , Monitoramento Ambiental , Isótopos , Nitratos , Poluentes Químicos da Água
3.
Sci Total Environ ; 896: 164911, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37355120

RESUMO

The EU Water Framework Directive (WFD) has emphasized that altered stream/river morphology and diffuse pollution are the two major pressures faced by European water bodies at catchment scales. Increasing efforts have been directed toward restoration to meet WFD standards for ecological health, but this work has achieved limited success. One challenge is that little is known about how morphological changes (i.e., re-meandering) may affect nitrate retention within whole stream networks. We investigated this issue in the well-monitored Bode catchment (3200 km2) in central Germany. First, we implemented a fully distributed process-based mHM-Nitrate model, exploring its performance over the period from 2015 to 2018. Second, we simulated the effects of restoring more natural stream morphology (i.e., increasing sinuosity) on nitrate retention. The mHM-Nitrate model performed well in replicating daily discharge and nitrate concentrations (median Kling-Gupta values of 0.78 and 0.74, respectively). Within the stream network, mean and standard deviation (SD) of gross nitrate retention efficiency was 5.1 ± 0.61 % and 74.7 ± 23.2 % in the winter and summer, respectively; this measure took into account both denitrification and assimilatory uptake. In the summer, the denitrification rate was about twice as high in a lowland sub-catchment dominated by agricultural lands as in a mountainous sub-catchment dominated by forested areas (median ± SD of 204 ± 22.6 and 102 ± 22.1 mg N m-2 d-1, respectively). Similarly, in the same season, the assimilatory uptake rate was approximately five times higher in streams surrounded by lowland agricultural areas than in streams in higher-elevation, forested areas (median ± SD of 200 ± 27.1 and 39.1 ± 8.7 mg N m-2 d-1, respectively). This suggests that restoration strategies targeted at lowland agricultural areas may have a greater potential for increasing nitrate retention. In our simulation, restoring stream sinuosity was found to increase net nitrate retention efficiency by up to 25.4 ± 5.3 %; greater effects were seen in small streams. Taken together, our results indicate that restoration efforts should consider augmenting stream sinuosity to increase nitrate retention and decrease nitrate concentrations at the catchment scale.

4.
Commun Earth Environ ; 4(1): 49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665201

RESUMO

Anomalies in the frequency of river floods, i.e., flood-rich or -poor periods, cause biases in flood risk estimates and thus make climate adaptation measures less efficient. While observations have recently confirmed the presence of flood anomalies in Europe, their exact causes are not clear. Here we analyse streamflow and climate observations during 1960-2010 to show that shifts in flood generation processes contribute more to the occurrence of regional flood anomalies than changes in extreme rainfall. A shift from rain on dry soil to rain on wet soil events by 5% increased the frequency of flood-rich periods in the Atlantic region, and an opposite shift in the Mediterranean region increased the frequency of flood-poor periods, but will likely make singular extreme floods occur more often. Flood anomalies driven by changing flood generation processes in Europe may further intensify in a warming climate and should be considered in flood estimation and management.

5.
Sci Total Environ ; 706: 136066, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31864136

RESUMO

The infiltration of untreated wastewater into aquifers highly endangers the availability of fresh-water for human consumption in semi-arid areas. This growing problem of potable water scarcity urgently requires solutions for groundwater protection. Decision support systems for local wastewater treatments in settlements already exist. However, the main challenge of implementing these for regional groundwater protection is to identify where wastewater treatments are most efficient for the whole region. In this paper, we addressed this scale-crossing problem with an interdisciplinary approach that combines regional risk assessment and assessment of local wastewater treatment scenarios. We analysed the impact of polluting the groundwater using vulnerability, hazard, and risk assessments. Thus, we identified the need for semi-arid and karst-related adjustments, defined more suitable standards for wastewater hazard values, and accounted for the groundwater dynamics beyond the vertical flow paths. Using a lateral groundwater flow model, we analysed the impact of the pollution sources and linked the regional and local scale successfully. Furthermore, we combined the geoscientific results with the urban water engineering methods of area and cost assessments for local wastewater scenarios. Based on the example of the Wadi al Arab aquifer in Jordan, we showed that implementing an adapted treatment solution in one of the heavily polluted suburban settlements could reduce 12% of the aquifer pollution, which affects 93% of the potential aquifer users. This novel method helps to identify settlements with significant pollution impact on the groundwater, as well as the users, and also gives specific guidelines to establish the most efficient locally tailored treatment solution.

6.
WIREs Water ; 6(4): e1353, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31423301

RESUMO

A wide variety of processes controls the time of occurrence, duration, extent, and severity of river floods. Classifying flood events by their causative processes may assist in enhancing the accuracy of local and regional flood frequency estimates and support the detection and interpretation of any changes in flood occurrence and magnitudes. This paper provides a critical review of existing causative classifications of instrumental and preinstrumental series of flood events, discusses their validity and applications, and identifies opportunities for moving toward more comprehensive approaches. So far no unified definition of causative mechanisms of flood events exists. Existing frameworks for classification of instrumental and preinstrumental series of flood events adopt different perspectives: hydroclimatic (large-scale circulation patterns and atmospheric state at the time of the event), hydrological (catchment scale precipitation patterns and antecedent catchment state), and hydrograph-based (indirectly considering generating mechanisms through their effects on hydrograph characteristics). All of these approaches intend to capture the flood generating mechanisms and are useful for characterizing the flood processes at various spatial and temporal scales. However, uncertainty analyses with respect to indicators, classification methods, and data to assess the robustness of the classification are rarely performed which limits the transferability across different geographic regions. It is argued that more rigorous testing is needed. There are opportunities for extending classification methods to include indicators of space-time dynamics of rainfall, antecedent wetness, and routing effects, which will make the classification schemes even more useful for understanding and estimating floods. This article is categorized under:Science of Water > Water ExtremesScience of Water > Hydrological ProcessesScience of Water > Methods.

7.
Sci Total Environ ; 612: 49-62, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28846904

RESUMO

This study analyses how indicators of water quality (thirteen physico-chemical variables) and drivers of change (i.e., monthly aggregated air temperature and streamflow, population density, and percentage of agricultural land use) coevolve in three large European river basins (i.e., Adige, Ebro, Sava) with different climatic, soil and water use conditions. Spearman rank correlation, Principal Component Analysis, and Mann-Kendall trend tests were applied to long-term time series of water quality data during the period 1990-2015 in order to investigate the relationships between water quality parameters and the main factors controlling them. Results show that air temperature, considered as a proxy of climatic change, has a significant impact, in particular in the Adige and Ebro: positive trends of water temperature and negative of dissolved oxygen are correlated with upward trends of air temperatures. The aquatic ecosystems of these rivers are, therefore, experiencing a reduction in oxygen, which may exacerbate in the future given the projected further increase in temperature. Furthermore, monthly streamflow has been shown to reduce in the Ebro, thereby reducing the beneficial effect of dilution, which appears evident from the observed upward patterns of chloride concentrations and electrical conductivity. Upward trends of chloride and biological oxygen demand in the Adige and Sava, and of phosphate in the Adige appears to be related to increasing human population density, whereas phosphates in the Sava and biological oxygen demand in the Ebro are highly correlated with agricultural land use, considered as a proxy of the impact of agricultural practises. The present study shows the complex relationships between drivers and observed changes in water quality parameters. Such analysis can represent, complementary to a deep knowledge of the investigated systems, a reliable tool for decision makers in river basin planning by providing an overview of the potential impacts on the aquatic ecosystem of the three basins.

8.
Sci Total Environ ; 615: 773-783, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28992502

RESUMO

Elevated nitrate concentrations are a thread for water supply and ecological integrity in surface water. Nitrate fluxes obtained by standard monitoring protocols at the catchment outlet strongly integrate spatially and temporally variable processes such as mobilization and turnover. Consequently, inference of dominant nitrate sources is often problematic and challenging in terms of effective river management and prioritization of measures. Here, we combine a spatially highly resolved assessment of nitrate concentration and fluxes along a mesoscale catchment with four years of monitoring data at two representative sites. The catchment is characterized by a strong land use gradient from pristine headwaters to lowland sub-catchments with intense agricultural land use and wastewater sources. We use nitrate concentrations in combination with hydrograph separation and isotopic fingerprinting methods to characterize and quantify nitrate source contribution. The hydrological analysis revealed a clear dominance of base flow during both campaigns. However, the absolute amounts of discharge differed considerably from one another (outlet: 1.42m3s-1 in 2014, 0.43m3s-1 in 2015). Nitrate concentrations are generally low in the pristine headwaters (<3mgL-1) and increase downstream (15 to 16mgL-1) due to the contribution of agricultural and wastewater sources. While the agricultural contribution did not vary in terms of nitrate concentration and isotopic signature between the years, the wastewater contribution strongly increased with decreasing discharge. Wastewater-borne nitrate load in the entire catchment ranged between 19% (2014) and 39% (2015). Long-term monitoring of nitrate concentration and isotopic composition in two sub-catchment exhibits a good agreement with findings from spatially monitoring. In both datasets, isotopic composition indicates that denitrification plays only a minor role. The spatially highly resolved monitoring approach helped to pinpoint hot spots of nitrate inputs into the stream while the long-term information allowed to place results into the context of intra-annual variability.

9.
Sci Total Environ ; 615: 1028-1047, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29751407

RESUMO

Sustainable water basin management requires characterization of flow regime in river networks impacted by anthropogenic pressures. Flow regime in ungauged catchments under current, future, or natural conditions can be assessed with hydrological models. Developing hydrological models is, however, resource demanding such that decision makers might revert to models that have been developed for other purposes and are made available to them ('off-the-shelf' models). In this study, the impact of epistemic uncertainty of flow regime indicators on flow-ecological assessment was assessed at selected stations with drainage areas ranging from about 400 to almost 90,000km2 in four South European basins (Adige, Ebro, Evrotas and Sava). For each basin, at least two models were employed. Models differed in structure, data input, spatio-temporal resolution, and calibration strategy, reflecting the variety of conditions and purposes for which they were initially developed. The uncertainty of modelled flow regime was assessed by comparing the modelled hydrologic indicators of magnitude, timing, duration, frequency and rate of change to those obtained from observed flow. The results showed that modelled flow magnitude indicators at medium and high flows were generally reliable, whereas indicators for flow timing, duration, and rate of change were affected by large uncertainties, with correlation coefficients mostly below 0.50. These findings mirror uncertainty in flow regime indicators assessed with other methods, including from measured streamflow. The large indicator uncertainty may significantly affect assessment of ecological status in freshwater systems, particularly in ungauged catchments. Finally, flow-ecological assessments proved very sensitive to reference flow regime (i.e., without anthropogenic pressures). Model simulations could not adequately capture flow regime in the reference sites comprised in this study. The lack of reliable reference conditions may seriously hamper flow-ecological assessments. This study shows the pressing need for improving assessment of natural flow regime at pan-European scale.

10.
Science ; 357(6351): 588-590, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28798129

RESUMO

A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale.

11.
Isotopes Environ Health Stud ; 52(1-2): 61-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25811939

RESUMO

Interactions between hydrological characteristics and microbial activities affect the isotopic composition of dissolved nitrate in surface water. Nitrogen and oxygen isotopic signatures of riverine nitrate in 133 sampling locations distributed over the Bode River catchment in the Harz Mountains, Germany, were used to identify nitrate sources and transformation processes. An annual monitoring programme consisting of seasonal sampling campaigns in spring, summer and autumn was conducted. δ(15)N and δ(18)O of nitrate and corresponding concentrations were measured as well as δ(2)H and δ(18)O of water to determine the deuterium excess. In addition, precipitation on 25 sampling stations was sampled and considered as a potential input factor. The Bode River catchment is strongly influenced by agricultural land use which is about 70 % of the overall size of the catchment. Different nitrogen sources such as ammonia (NH4) fertilizer, soil nitrogen, organic fertilizer or nitrate in precipitation show partly clear nitrate isotopic differences. Processes such as microbial denitrification result in fractionation and lead to an increase in δ(15)N of nitrate. We observed an evident regional and partly temporal variation of nitrate isotope signatures which are clearly different between main landscape types. Spring water sections within the high mountains contain nitrate in low concentrations with low δ(15)NNO3 values of -3 ‰ and high δ(18)ONO3 values up to 13 ‰. High mountain stream water sub-catchments dominated by nearly undisturbed forest and grassland contribute nitrate with δ(15)NNO3 and δ(18)ONO3 values of -1 and -3.5 ‰, respectively. In the further flow path, which is affected by an increasing agricultural land use and urban sewage, we recognized an increase in δ(15)NNO3 and δ(18)ONO3 up to 22 and 18 ‰, respectively, with high variations during the year. A correlation seems to exist between the percentage of agricultural land use area and the corresponding δ(15)NNO3 values for sub-catchments. A shift towards heavier isotope values in stream water samples taken in July 2012 is significant (p-value = 6 · 10(-6)) compared to samples from March and October 2012. We also see a season-depending impact of microbial denitrification. Denitrification, especially evident in the lowlands, predominantly takes place in the riverbeds. In addition, mixing processes of different nitrate sources and temperature-depending biological processes such as nitrification have to be taken into consideration. Constant-tempered groundwater does not play a noticeable role in the processes of the stream water system. As constrained from oxygen isotope signatures, precipitation associated with low nitrate concentrations does not have an obvious impact on stream water nitrate in the high mountain region.


Assuntos
Monitoramento Ambiental/métodos , Nitrogênio/análise , Oxigênio/análise , Rios/química , Fracionamento Químico , Monitoramento Ambiental/instrumentação , Alemanha , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise
12.
Sci Total Environ ; 571: 1392-406, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27450256

RESUMO

Water resources are under pressure from multiple anthropogenic stressors such as changing climate, agriculture and water abstraction. This holds, in particular, for the Mediterranean region, where substantial changes in climate are expected throughout the 21st century. Nonetheless, little attention has been paid to linkages between long-term trends in climate, streamflow and water quality in Mediterranean river basins. In the present study, we perform a comparative analysis of recent trends in hydroclimatic parameters and nitrate pollution in three climatologically different Mediterranean watersheds (i.e., the Adige, Ebro and Sava River Basins). Mann-Kendall trend analyses of annual mean temperature, precipitation and streamflow (period 1971 to 2010) and monthly nitrate concentrations, mass fluxes and flow-adjusted concentrations (period 1996 to 2012) were performed in these river basins. Temperature is shown to have increased the most in the Ebro followed by the Sava, whereas minor increases are observed in the Adige. Precipitation presents, overall, a negative trend in the Ebro and a positive trend in both the Adige and Sava. These climatic trends thus suggest the highest risk of increasing water scarcity for the Ebro and the lowest risk for the Adige. This is confirmed by trend analyses of streamflow time series, which indicate a severe decline in streamflow for the Ebro and a substantial decline in the Sava, as opposed to the Adige showing no prevailing trend. Concerning surface water quality, nitrate pollution appears to have decreased in all study basins. Overall, these findings emphasize progressive reduction of water resources availability in river basins characterized by continental climate (i.e., Ebro and Sava). This study thus underlines the need for adapted river management in the Mediterranean region, particularly considering strong feedbacks between hydroclimatic trends, freshwater ecosystem services and water resources availability for agriculture, water supply and hydropower generation.


Assuntos
Clima , Nitratos/análise , Rios/química , Poluentes Químicos da Água/análise , Qualidade da Água , Monitoramento Ambiental , Europa (Continente) , Hidrologia
13.
Sci Total Environ ; 544: 1045-58, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26779955

RESUMO

The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, ~1m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments.

14.
Sci Total Environ ; 503-504: 3-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25005236

RESUMO

Water scarcity is a serious environmental problem in many European regions, and will likely increase in the near future as a consequence of increased abstraction and climate change. Water scarcity exacerbates the effects of multiple stressors, and thus results in decreased water quality. It impacts river ecosystems, threatens the services they provide, and it will force managers and policy-makers to change their current practices. The EU-FP7 project GLOBAQUA aims at identifying the prevalence, interaction and linkages between stressors, and to assess their effects on the chemical and ecological status of freshwater ecosystems in order to improve water management practice and policies. GLOBAQUA assembles a multidisciplinary team of 21 European plus 2 non-European scientific institutions, as well as water authorities and river basin managers. The project includes experts in hydrology, chemistry, biology, geomorphology, modelling, socio-economics, governance science, knowledge brokerage, and policy advocacy. GLOBAQUA studies six river basins (Ebro, Adige, Sava, Evrotas, Anglian and Souss Massa) affected by water scarcity, and aims to answer the following questions: how does water scarcity interact with other existing stressors in the study river basins? How will these interactions change according to the different scenarios of future global change? Which will be the foreseeable consequences for river ecosystems? How will these in turn affect the services the ecosystems provide? How should management and policies be adapted to minimise the ecological, economic and societal consequences? These questions will be approached by combining data-mining, field- and laboratory-based research, and modelling. Here, we outline the general structure of the project and the activities to be conducted within the fourteen work-packages of GLOBAQUA.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Qualidade da Água/normas , Abastecimento de Água , Mudança Climática , Modelos Teóricos
15.
Sci Total Environ ; 485-486: 828-841, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24767316

RESUMO

The overall aim of the this study, which was conducted within the framework of the multilateral IWRM project SUMAR, was to expand the scientific basement to quantify surface- and groundwater fluxes towards the hypersaline Dead Sea. The flux significance for the arid vicinity around the Dead Sea is decisive not only for a sustainable management in terms of water availability for future generations but also for the resilience of the unique ecosystems along its coast. Coping with different challenges interdisciplinary methods like (i) hydrogeochemical fingerprinting, (ii) satellite and airborne-based thermal remote sensing, (iii) direct measurement with gauging station in ephemeral wadis and a first multilateral gauging station at the river Jordan, (iv) hydro-bio-geochemical approach at submarine and shore springs along the Dead Sea and (v) hydro(geo)logical modelling contributed to the overall aim. As primary results, we deduce that the following: (i) Within the drainage basins of the Dead Sea, the total mean annual precipitation amounts to 300 mm a(−1) west and to 179 mm a(−1) east of the lake, respectively. (ii) The total mean annual runoff volumes from side wadis (except the Jordan River) entering the Dead Sea is approximately 58­66 × 10(6) m(3) a(−1) (western wadis: 7­15 × 10(6) m(3) a(−1); eastern wadis: 51 × 10(6) m(3) a(−1)). (iii) The modelled groundwater discharge from the upper Cretaceous aquifers in both flanks of the Dead Sea towards the lake amounts to 177 × 10(6) m(3) a(−1). (iv) An unexpected abundance of life in submarine springs exists, which in turn explains microbial moderated geo-bio-chemical processes in the Dead Sea sediments, affecting the highly variable chemical composition of on- and offshore spring waters.The results of this work show a promising enhancement of describing and modelling the Dead Sea basin as a whole.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Água Subterrânea/química , Movimentos da Água , Clima Desértico , Água Doce/análise , Água Subterrânea/análise , Jordânia
16.
Isotopes Environ Health Stud ; 49(4): 542-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24313375

RESUMO

The Gunt River catchment in the Central Pamirs is a representative of the headwater catchments of the Aral Sea Basin. It covers 14,000 km(2), spanning altitudes between 2000 and 6700 m a.s.l. In a monitoring network, water samples were taken at 30 sampling points every month and analysed for the stable water isotopes ((18)O and (2)H). Our first results show δ(2)H values in the range from-131.2 to-94.9 ‰ and δ(18)O values from-18.0 to-14.0 ‰. The stable isotope patterns in the catchment seem to follow a systematic way, dominated by an altitude effect with a mean Δ Î´(2)H=-3.6 ‰/100 m. The observed seasonal variations can be explained by geographical aspects such as the influence of different wind systems as well as melting processes.


Assuntos
Rios/química , Altitude , Deutério/análise , Monitoramento Ambiental/métodos , Isótopos de Oxigênio/análise , Estações do Ano , Tadjiquistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA