Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 124(2): 607-622, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37684396

RESUMO

PURPOSE: Running at a given speed can be achieved by taking large steps at a low frequency or on the contrary by taking small steps at a high frequency. The consequences of a change in step frequency, at a fixed speed, affects the stiffness of the lower limb differently. In this study, we compared the running mechanics and kinematics at different imposed step frequencies (from 2 step s-1 to 3.6 step s-1) to understand the relationship between kinematic and kinetic parameters. METHODS: Eight recreational male runners ran on a treadmill at 5 different speeds and 5 different step frequencies. The lower-limb segment motion and the ground reaction forces were recorded. Mechanical powers, general gait parameters, lower-limb movements and coordination were investigated. RESULTS: At low step frequencies, in order to limit the magnitude of the ground reaction force, the vertical stiffness is reduced and thus runners deviate from an elastic rebound. At high step frequencies, the stiffness is increased and the elastic rebound is optimised in its ability to absorb and restore energy during the contact phase. CONCLUSION: We studied the consequences of a change in step frequency on the bouncing mechanics of running. We showed that the lower limb stiffness and the intersegmental coordination of the lower-limb segments are affected by running step frequency rather than speed. The runner rather adapts their lower limb stiffness to match a step frequency for a given speed than the opposite.


Assuntos
Marcha , Extremidade Inferior , Humanos , Masculino , Fenômenos Biomecânicos , Movimento , Movimento (Física)
2.
J Exp Biol ; 224(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34676869

RESUMO

As the largest extant legged animals, elephants arguably face the most extreme challenge for stable standing. In this study, we investigated the displacement of the centre of pressure of 12 elephants during quiet standing. We found that the average amplitude of the oscillations in the lateral and fore-aft directions was less than 1.5 cm. Such amplitudes for postural oscillation are comparable with those of dogs and other species, suggesting that some aspects of sensorimotor postural control do not scale with size.


Assuntos
Elefantes , Animais , Cães , Equilíbrio Postural , Postura
3.
Eur J Appl Physiol ; 120(1): 91-106, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31701272

RESUMO

PURPOSE: Walking against a constant horizontal traction force which either hinders or aids the motion of the centre of mass of the body (COM) will create a discrepancy between the positive and negative work being done by the muscles and may thus affect the mechanics and energetics of walking. We aimed at investigating how this imbalance affects the exchange between potential and kinetic energy of the COM and how its dynamics is related to specific spatiotemporal organisation of motor pool activity in the spinal cord. To understand if and how the spinal cord activation may be associated with COM dynamics, we also compared the neuromechanical adjustments brought on by a horizontal force with published data about those brought on by a slope. METHODS: Ten subjects walked on a treadmill at different speeds with different traction forces. We recorded kinetics, kinematics, and electromyographic activity of 16 lower-limb muscles and assessed the spinal locomotor output by mapping them onto the rostrocaudal location of the motoneuron pools. RESULTS: When walking with a hindering force, the major part of the exchange between potential and kinetic energy of the COM occurs during the first part of stance, whereas with an aiding force exchanges increase during the second part of stance. Those changes occur since limb and trunk orientations remain aligned with the average orientation of the ground reaction force vector. Our results also show the sacral motor pools decreased their activity with an aiding force and increased with a hindering one, whereas the lumbar motor pools increased their engagement both with an aiding and a hindering force. CONCLUSION: Our findings suggest that applying a constant horizontal force results in similar modifications of COM dynamics and spinal motor output to those observed when walking on slopes, consistent with common principles of motor pool functioning and biomechanics of locomotion.


Assuntos
Músculo Esquelético/fisiologia , Medula Espinal/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Pesos e Medidas Corporais , Humanos , Masculino , Músculo Esquelético/inervação , Distribuição Aleatória , Propriedades de Superfície
4.
Eur J Appl Physiol ; 120(7): 1575-1589, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32394064

RESUMO

PURPOSE: Much like running on a slope, running against/with a horizontal traction force which either hinders/aids the forward motion of the runner creates a shift in the positive and negative muscular work, which in turn modifies the bouncing mechanism of running. The purpose of the study is to (1) investigate the energy changes of the centre of mass and the storage/release of energy throughout the step during running associated with speed and increasing hindering and aiding traction forces; and (2) compare these changes to those observed when running on a slope. METHODS: Ground reaction forces were measured on eight subjects running on an instrumented treadmill against different traction forces at different speeds. RESULTS: As compared to unperturbed running, running against/with a traction force increases/decreases positive external work by ~ 20-70% and decreases/increases negative work by ~ 40-60%, depending on speed and traction force. The external power to maintain forward motion against a traction is contained by increasing the pushing time and step frequency. When running with an aiding force, the external power during the brake is limited by increasing braking time. Furthermore, the aerial time is increased to reduce the power required to reset the limbs each step. CONCLUSION: Our results show that the bouncing mechanism of running against/with a hindering/aiding traction force is equivalent to that of running on a positive/negative slope.


Assuntos
Fenômenos Biomecânicos/fisiologia , Músculo Esquelético/fisiologia , Corrida , Tração , Adulto , Teste de Esforço , Humanos , Masculino , Movimento (Física) , Adulto Jovem
5.
Biophys J ; 78(6): 3019-25, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10827980

RESUMO

The partition coefficients (K(P)) of a series of single-chain and double-chain fluorescent amphiphiles, between solid ordered (P(beta') and L(beta)) and liquid disordered (L(alpha) of the type l(d)) lipid phases coexisting in the same lipid bilayer, was studied using steady-state fluorescence emission anisotropy. The single-chain amphiphiles were N-(7-nitrobenzoxa-2, 3-diazol-4-yl)-alkylamines, and the double-chain amphiphiles were N-(7-nitrobenzoxa-2, 3-diazol-4-yl)-phosphatidylethanolamines with chain lengths of 12-18 carbon atoms. Saturated 18-carbon alkyl/acyl chain compounds were also compared with Delta(9)-cis unsaturated chains of the same chain length. The fluorescence anisotropy of the probes was examined in lipid bilayers (multilamellar vesicles) prepared from an equimolar mixture of dilauroylphosphatidylcholine and distearoylphosphatidylcholine and studied as a function of temperature through the entire temperature range of coexistence of ordered gel phases and a disordered fluid phase in this system. The unsaturated chain amphiphiles partitioned exclusively into the fluid phase whenever this phase was present, as did the saturated chain amphiphiles with the shortest chains (C(12:0)), while K(P) ranges between 1 and 2, in favor of the L(beta) solid phase, for the amphiphiles with long saturated (C(18:0)) alkyl/acyl chains, with intermediate behavior for the intermediate chain lengths. All probes appeared to be totally excluded from P(beta') solid (gel) phases. The technique was also used to determine partitioning of some of the probes between coexisting liquid ordered (cholesterol-containing) (l(o)) and liquid disordered (l(d)) L(alpha) phases. In this case the ratio of signal amplitude to noise allowed us to obtain a qualitative, but not quantitative, measure of the phase partitioning of the probes. We conclude that the partitioning behavior of the probes examined between coexisting l(o) and l(d) phases is qualitatively similar to that observed between solid ordered and liquid disordered phases.


Assuntos
Corantes Fluorescentes , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Polarização de Fluorescência , Teoria Quântica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA