Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
OMICS ; 28(4): 182-192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634790

RESUMO

Over a decade ago, longitudinal multiomics analysis was pioneered for early disease detection and individually tailored precision health interventions. However, high sample processing costs, expansive multiomics measurements along with complex data analysis have made this approach to precision/personalized medicine impractical. Here we describe in a case report, a more practical approach that uses fewer measurements, annual sampling, and faster decision making. We also show how this approach offers promise to detect an exceedingly rare and potentially fatal condition before it fully manifests. Specifically, we describe in the present case report how longitudinal multiomics monitoring (LMOM) helped detect a precancerous pancreatic tumor and led to a successful surgical intervention. The patient, enrolled in an annual blood-based LMOM since 2018, had dramatic changes in the June 2021 and 2022 annual metabolomics and proteomics results that prompted further clinical diagnostic testing for pancreatic cancer. Using abdominal magnetic resonance imaging, a 2.6 cm lesion in the tail of the patient's pancreas was detected. The tumor fluid from an aspiration biopsy had 10,000 times that of normal carcinoembryonic antigen levels. After the tumor was surgically resected, histopathological findings confirmed it was a precancerous pancreatic tumor. Postoperative omics testing indicated that most metabolite and protein levels returned to patient's 2018 levels. This case report illustrates the potentials of blood LMOM for precision/personalized medicine, and new ways of thinking medical innovation for a potentially life-saving early diagnosis of pancreatic cancer. Blood LMOM warrants future programmatic translational research with the goals of precision medicine, and individually tailored cancer diagnoses and treatments.


Assuntos
Neoplasias Pancreáticas , Lesões Pré-Cancerosas , Humanos , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Detecção Precoce de Câncer/métodos , Imageamento por Ressonância Magnética , Metabolômica/métodos , Multiômica , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/genética , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/sangue , Lesões Pré-Cancerosas/patologia , Medicina de Precisão/métodos , Proteômica/métodos , Feminino
2.
Diabetes Ther ; 13(1): 89-111, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34799839

RESUMO

Limiting postprandial glycemic response (PPGR) is an important intervention in reducing the risk of chronic metabolic diseases and has been shown to impart significant health benefits in people with elevated levels of blood sugar. In this study, we collected gut microbiome activity data by assessing the metatranscriptome, and we measured the glycemic responses of 550 adults who consumed more than 30,000 meals, collectively, from omnivore or vegetarian/gluten-free diets. We demonstrate that gut microbiome activity, anthropometric factors, and food macronutrients modulate individual variation in glycemic response. We employ two predictive models, including a mixed-effects linear regression model (R = 0.77) and a gradient boosting machine model (Rtrain = 0.80/R2train = 0.64; Rtest = 0.64/R2test = 0.40), which demonstrate variation in PPGR between individuals when ingesting the same foods. All features in the final mixed-effects linear regression model were significant (p < 0.05) except for two features which were retained as suggestive: glutamine production pathways (p = 0.08) and the interaction between tyrosine metabolizers and carbs (p = 0.06). We introduce molecular functions as features in these two models, aggregated from microbial activity data, and show their statistically significant contributions to glycemic control. In summary, we demonstrate for the first time that metatranscriptomic activity of the gut microbiome is correlated with PPGR among adults.


Blood sugar dysregulation is caused by various underlying conditions, including type 2 diabetes, and this may lead to extended periods of hypoglycemia or hyperglycemia, which can be harmful or deadly. Clinically, glycemic control is a primary therapeutic target for dysglycemia, and food and nutrition are frequent interventions used to reduce postprandial blood glucose excursions. Primary determinants of postprandial glycemic response (PPGR) include dietary carbohydrates, individual phenotypes, and individual molecular characteristics which include the gut microbiome. Typical investigations of gut microbiomes depend on analysis methods which have poor taxonomic resolution, cannot identify certain microorganisms, and are prone to errors. In this study, each RNA molecule was identified and counted, allowing quantitative strain-level taxonomic classification and molecular pathway analysis. The primary goal of the study was to assess the impact of microbial functional activity on PPGR. The study was conducted in the USA and involved a multiethnic population of healthy adults with HbA1c levels below 6.5. All participants received 14-day omnivore diets or vegetarian/gluten-free diets, depending on nutritional requirements (omnivore diets include meat while vegetarian/gluten-free diets exclude both gluten and meat). Over this timeframe, blood glucose levels were measured in 15-min intervals, 24 h per day, capturing postprandial responses for more than 27,000 meals, including more than 18,000 provided meals which spanned a wide range of foods and macronutrient characteristics. Computational modeling demonstrated the statistical significance of all features and identified new features which may be relevant to glycemic control. These results show, for the first time, that a person's glycemic response depends on individual traits, including both their anthropometrics and their gut metatranscriptome, representing the activity of gut microbiomes.

3.
Int J Genomics ; 2019: 1718741, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662956

RESUMO

A functional readout of the gut microbiome is necessary to enable precise control of the gut microbiome's functions, which support human health and prevent or minimize a wide range of chronic diseases. Stool metatranscriptomic analysis offers a comprehensive functional view of the gut microbiome, but despite its usefulness, it has rarely been used in clinical studies due to its complexity, cost, and bioinformatic challenges. This method has also received criticism due to potential intrasample variability, rapid changes, and RNA degradation. Here, we describe a robust and automated stool metatranscriptomic method, called Viomega, which was specifically developed for population-scale studies. Viomega includes sample collection, ambient temperature sample preservation, total RNA extraction, physical removal of ribosomal RNAs (rRNAs), preparation of directional Illumina libraries, Illumina sequencing, taxonomic classification based on a database of >110,000 microbial genomes, and quantitative microbial gene expression analysis using a database of ~100 million microbial genes. We applied this method to 10,000 human stool samples and performed several small-scale studies to demonstrate sample stability and consistency. In summary, Viomega is an inexpensive, high-throughput, automated, and accurate sample-to-result stool metatranscriptomic technology platform for large-scale studies and a wide range of applications.

4.
Nat Genet ; 49(4): 568-578, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28263315

RESUMO

Genetic factors modifying the blood metabolome have been investigated through genome-wide association studies (GWAS) of common genetic variants and through exome sequencing. We conducted a whole-genome sequencing study of common, low-frequency and rare variants to associate genetic variations with blood metabolite levels using comprehensive metabolite profiling in 1,960 adults. We focused the analysis on 644 metabolites with consistent levels across three longitudinal data collections. Genetic sequence variations at 101 loci were associated with the levels of 246 (38%) metabolites (P ≤ 1.9 × 10-11). We identified 113 (10.7%) among 1,054 unrelated individuals in the cohort who carried heterozygous rare variants likely influencing the function of 17 genes. Thirteen of the 17 genes are associated with inborn errors of metabolism or other pediatric genetic conditions. This study extends the map of loci influencing the metabolome and highlights the importance of heterozygous rare variants in determining abnormal blood metabolic phenotypes in adults.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/genética , Metaboloma/genética , Adulto , Idoso , Sangue , Exoma/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Locos de Características Quantitativas
5.
Expert Rev Mol Diagn ; 16(5): 521-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26810587

RESUMO

Precision or personalized medicine through clinical genome and exome sequencing has been described by some as a revolution that could transform healthcare delivery, yet it is currently used in only a small fraction of patients, principally for the diagnosis of suspected Mendelian conditions and for targeting cancer treatments. Given the burden of illness in our society, it is of interest to ask how clinical genome and exome sequencing can be constructively integrated more broadly into the routine practice of medicine for the betterment of public health. In November 2014, 46 experts from academia, industry, policy and patient advocacy gathered in a conference sponsored by Illumina, Inc. to discuss this question, share viewpoints and propose recommendations. This perspective summarizes that work and identifies some of the obstacles and opportunities that must be considered in translating advances in genomics more widely into the practice of medicine.


Assuntos
Atenção à Saúde/organização & administração , Genoma Humano , Genômica/métodos , Medicina de Precisão/tendências , Atenção à Saúde/métodos , Testes Genéticos , Genômica/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Kit de Reagentes para Diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA