RESUMO
In the past two decades, repeated discoveries of numerous geometric earthworks in interfluvial regions of Amazonia have shed new light onto the territorial extent and the long-term impact of pre-Columbian populations on contemporary landscapes. In particular, the recent development of LiDAR imagery has accelerated the discovery of earthworks in densely forested hinterlands throughout the Amazon basin and the Guiana Shield. This study aimed to evaluate the extent and landscape-scale spatial variations of pre-Columbian disturbances at three ring ditch sites in the French Guiana hinterland. We carried out extensive soil surveys along approximately 1 km-long transects spanning from ring ditches through the surrounding landscapes, and drawn upon multiple indicators, including archaeological artifacts, macro- and micro-charcoals, soil colorimetry, and physicochemical properties to retrace the pre-Columbian history of these sites in terms of occupation periods, anthropogenic soil alteration, and ancient land use. Our results revealed a perennial occupation of these sites over long periods ranging from the 5th and 15th centuries CE, with local enrichments in chemical indicators (Corg, N, Mg, K, Ca) both within the enclosures of ring ditches and in the surrounding landscapes. Physicochemical properties variations were accompanied by variations in soil colorimetry, with darker soils within the enclosure of ring ditches in terra-firme areas. Interestingly however, soil properties did not meet all the characteristics of the so-called Amazonian Dark Earths, thus advocating a paradigm shift towards a better integration of Amazonian Brown Earths into the definition of anthropogenic soils in Amazonia. Soil disturbances were also associated to local enrichments in macro- and micro-charcoals that support in situ fire management that could be attributed to forest clearance and/or slash-and-burn cultivation. Taken together, our results support the idea that pre-Columbian societies made extensive use of their landscapes in the interfluvial regions of the French Guiana hinterlands.
Assuntos
Solo , Guiana Francesa , Solo/química , Arqueologia , Humanos , Florestas , Efeitos Antropogênicos , História MedievalRESUMO
Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.
Assuntos
Arqueologia , Florestas , Humanos , BrasilRESUMO
To decipher the long-term influences of pre-Columbian land occupations on contemporary forest structure, diversity, and functioning in Amazonia, most of the previous research focused on the alluvial plains of the major rivers of the Amazon basin. Terra firme, that is, nonflooded forests, particularly from the Guiana Shield, are yet to be explored. In this study, we aim to give new insights into the subtle traces of pre-Columbian influences on present-day forests given the archaeological context of terra firme forests of the Guiana Shield. Following archaeological prospects on 13 sites in French Guiana, we carried out forest inventories inside and outside archaeological sites and assessed the potential pre-Columbian use of the sampled tree species using an original ethnobotanical database of the Guiana Shield region. Aboveground biomass (320 and 380 T/ha, respectively), basal area (25-30 and 30-35 m2 /ha, respectively), and tree density (550 and 700 stem/ha, respectively) were all significantly lower on anthropized plots (As) than on nonanthropized plots (NAs). Ancient human presence shaped the species composition of the sampled forests with Arecaceae, Burseraceae, and Lauraceae significantly more frequent in As and Annonaceae and Lecythidaceae more frequent in NAs. Although alpha diversity was not different between As and NAs, the presence of pre-Columbian sites enhances significantly the forest beta diversity at the landscape level. Finally, trees with edible fruits are positively associated with pre-Columbian sites, whereas trees used for construction or for their bark are negatively associated with pre-Columbian sites. Half a millennium after their abandonment, former occupied places from the inner Guiana Shield still bear noticeable differences with nonanthropized places. Considering the lack of data concerning archaeology of terra firme Amazonian forests, our results suggest that pre-Columbian influences on the structure (lower current biomass), diversity (higher beta diversity), and composition (linked to the past human tree uses) of current Amazonian forests might be more important than previously thought.