Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 101(3): 191-203, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36529987

RESUMO

Type 1 diabetes (T1D) is a condition characterized by an absolute deficiency of insulin. Loss of insulin-producing pancreatic islet ß cells is one of the many causes of T1D. Viral infections have long been associated with new-onset T1D and the balance between virulence and host immunity determines whether the viral infection would lead to T1D. Herein, we detail the dynamic interaction of pancreatic ß cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the host immune system with respect to new-onset T1D. Importantly, ß cells express the crucial entry receptors and multiple studies confirmed that ß cells are infected by SARS-CoV-2. Innate immune system effectors, such as natural killer cells, can eliminate such infected ß cells. Although CD4+ CD25+ FoxP3+ regulatory T (TREG ) cells provide immune tolerance to prevent the destruction of the islet ß-cell population by autoantigen-specific CD8+ T cells, it can be speculated that SARS-CoV-2 infection may compromise self-tolerance by depleting TREG -cell numbers or diminishing TREG -cell functions by repressing Forkhead box P3 (FoxP3) expression. However, the expansion of ß cells by self-duplication, and regeneration from progenitor cells, could effectively replace lost ß cells. Appearance of islet autoantibodies following SARS-CoV-2 infection was reported in a few cases, which could imply a breakdown of immune tolerance in the pancreatic islets. However, many of the cases with newly diagnosed autoimmune response following SARS-CoV-2 infection also presented with significantly high HbA1c (glycated hemoglobin) levels that indicated progression of an already set diabetes, rather than new-onset T1D. Here we review the potential underlying mechanisms behind loss of functional ß-cell mass as a result of SARS-CoV-2 infection that can trigger new-onset T1D.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Viroses , Humanos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T Reguladores , SARS-CoV-2/metabolismo , Insulina/metabolismo , Fatores de Transcrição Forkhead/metabolismo
2.
J Biol Chem ; 290(35): 21432-42, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26178371

RESUMO

SLC30A8 encodes a zinc transporter ZnT8 largely restricted to pancreatic islet ß- and α-cells, and responsible for zinc accumulation into secretory granules. Although common SLC30A8 variants, believed to reduce ZnT8 activity, increase type 2 diabetes risk in humans, rare inactivating mutations are protective. To investigate the role of Slc30a8 in the control of glucagon secretion, Slc30a8 was inactivated selectively in α-cells by crossing mice with alleles floxed at exon 1 to animals expressing Cre recombinase under the pre-proglucagon promoter. Further crossing to Rosa26:tdRFP mice, and sorting of RFP(+): glucagon(+) cells from KO mice, revealed recombination in ∼ 30% of α-cells, of which ∼ 50% were ZnT8-negative (14 ± 1.8% of all α-cells). Although glucose and insulin tolerance were normal, female αZnT8KO mice required lower glucose infusion rates during hypoglycemic clamps and displayed enhanced glucagon release (p < 0.001) versus WT mice. Correspondingly, islets isolated from αZnT8KO mice secreted more glucagon at 1 mm glucose, but not 17 mm glucose, than WT controls (n = 5; p = 0.008). Although the expression of other ZnT family members was unchanged, cytoplasmic (n = 4 mice per genotype; p < 0.0001) and granular (n = 3, p < 0.01) free Zn(2+) levels were significantly lower in KO α-cells versus control cells. In response to low glucose, the amplitude and frequency of intracellular Ca(2+) increases were unchanged in α-cells of αZnT8KO KO mice. ZnT8 is thus important in a subset of α-cells for normal responses to hypoglycemia and acts via Ca(2+)-independent mechanisms.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Hipoglicemia/metabolismo , Animais , Proteínas de Transporte de Cátions/análise , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Feminino , Deleção de Genes , Células Secretoras de Glucagon/citologia , Glucose/metabolismo , Hipoglicemia/genética , Resistência à Insulina , Camundongos Endogâmicos C57BL , Zinco/metabolismo , Transportador 8 de Zinco
3.
Am J Physiol Endocrinol Metab ; 311(2): E488-507, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27329800

RESUMO

Single nucleotide polymorphisms (SNPs) close to the VPS13C, C2CD4A and C2CD4B genes on chromosome 15q are associated with impaired fasting glucose and increased risk of type 2 diabetes. eQTL analysis revealed an association between possession of risk (C) alleles at a previously implicated causal SNP, rs7163757, and lowered VPS13C and C2CD4A levels in islets from female (n = 40, P < 0.041) but not from male subjects. Explored using promoter-reporter assays in ß-cells and other cell lines, the risk variant at rs7163757 lowered enhancer activity. Mice deleted for Vps13c selectively in the ß-cell were generated by crossing animals bearing a floxed allele at exon 1 to mice expressing Cre recombinase under Ins1 promoter control (Ins1Cre). Whereas Vps13c(fl/fl):Ins1Cre (ßVps13cKO) mice displayed normal weight gain compared with control littermates, deletion of Vps13c had little effect on glucose tolerance. Pancreatic histology revealed no significant change in ß-cell mass in KO mice vs. controls, and glucose-stimulated insulin secretion from isolated islets was not altered in vitro between control and ßVps13cKO mice. However, a tendency was observed in female null mice for lower insulin levels and ß-cell function (HOMA-B) in vivo. Furthermore, glucose-stimulated increases in intracellular free Ca(2+) were significantly increased in islets from female KO mice, suggesting impaired Ca(2+) sensitivity of the secretory machinery. The present data thus provide evidence for a limited role for changes in VPS13C expression in conferring altered disease risk at this locus, particularly in females, and suggest that C2CD4A may also be involved.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Intolerância à Glucose/genética , Células Secretoras de Insulina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Animais , Western Blotting , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/genética , Feminino , Células Secretoras de Glucagon/patologia , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Knockout , Pâncreas/patologia , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais , Proteínas de Transporte Vesicular
4.
Diabetologia ; 57(8): 1635-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24865615

RESUMO

AIMS/HYPOTHESIS: Hypoxic damage complicates islet isolation for transplantation and may contribute to beta cell failure in type 2 diabetes. Polymorphisms in the SLC30A8 gene, encoding the secretory granule zinc transporter 8 (ZnT8), influence type 2 diabetes risk, conceivably by modulating cytosolic Zn(2+) levels. We have therefore explored the role of ZnT8 and cytosolic Zn(2+) in the response to hypoxia of pancreatic islet cells. METHODS: Human, mouse or rat islets were isolated and exposed to varying O2 tensions. Cytosolic free zinc was measured using the adenovirally expressed recombinant targeted zinc probe eCALWY4. Gene expression was measured using quantitative (q)RT-PCR, western (immuno-) blotting or immunocytochemistry. Beta cells were identified by insulin immunoreactivity. RESULTS: Deprivation of O2 (1% vs 5% or 21%) for 24 h lowered free cytosolic Zn(2+) concentrations by ~40% (p < 0.05) and ~30% (p < 0.05) in mouse and human islet cells, respectively. Hypoxia similarly decreased SLC30A8 mRNA expression in islets, and immunoreactivity in beta cells. Implicating lowered ZnT8 levels in the hypoxia-induced fall in cytosolic Zn(2+), genetic ablation of Slc30a8 from mouse islets lowered cytosolic Zn(2+) by ~40% (p < 0.05) and decreased the induction of metallothionein (Mt1, Mt2) genes. Cell survival in the face of hypoxia was enhanced in small islets of older (>12 weeks) Slc30a8 null mice vs controls, but not younger animals. CONCLUSIONS/INTERPRETATION: The response of pancreatic beta cells to hypoxia is characterised by decreased SLC30A8 expression and lowered cytosolic Zn(2+) concentrations. The dependence on ZnT8 of hypoxia-induced changes in cell survival may contribute to the actions of SLC30A8 variants on diabetes risk in humans.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hipóxia/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Zinco/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Citosol/metabolismo , Humanos , Metalotioneína/genética , Metalotioneína/metabolismo , Camundongos , Ratos , Transportador 8 de Zinco
5.
DNA Repair (Amst) ; 141: 103732, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094381

RESUMO

The human DNA repair enzyme AlkB homologue-2 (ALKBH2) repairs methyl adducts from genomic DNA and is overexpressed in several cancers. However, there are no known inhibitors available for this crucial DNA repair enzyme. The aim of this study was to examine whether the first-generation HIV protease inhibitors having strong anti-cancer activity can be repurposed as inhibitors of ALKBH2. We selected four such inhibitors and performed in vitro binding analysis against ALKBH2 based on alterations of its intrinsic tryptophan fluorescence and differential scanning fluorimetry. The effect of these HIV protease inhibitors on the DNA repair activity of ALKBH2 was also evaluated. Interestingly, we observed that one of the inhibitors, ritonavir, could inhibit ALKBH2-mediated DNA repair significantly via competitive inhibition and sensitized cancer cells to alkylating agent methylmethane sulfonate (MMS). This work may provide new insights into the possibilities of utilizing HIV protease inhibitor ritonavir as a DNA repair antagonist.


Assuntos
Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato , Reparo do DNA , Inibidores da Protease de HIV , Metanossulfonato de Metila , Ritonavir , Humanos , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Ritonavir/farmacologia , Inibidores da Protease de HIV/farmacologia , Metanossulfonato de Metila/farmacologia , Dano ao DNA , Alquilação , Linhagem Celular Tumoral
6.
Front Endocrinol (Lausanne) ; 14: 1092104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025411

RESUMO

Background: SARS-CoV-2 infection during pregnancy may cause adverse maternal, neonatal and placental outcomes. While tissue hypoxia is often reported in COVID-19 patients, pregnant women with anemia are suspected to be more prone to placental hypoxia-related injuries. Methods: This hospital-based cross-sectional study was conducted between August-November 2021, during COVID-19 second wave in India. Term pregnant women (N=212) admitted to hospital for delivery were enrolled consecutively. Since hospital admission mandated negative RT-PCR test for SARS-CoV-2 virus, none had active infection. Data on socio-demography, COVID-19 history, maternal, obstetric, and neonatal outcomes were recorded. Pre-delivery maternal and post-delivery cord blood samples were tested for hematological parameters and SARS-CoV-2 IgG. Placentae were studied for histology. Results: Of 212 women, 122 (58%) were seropositive for SARS-CoV-2 IgG, but none reported COVID-19 history; 134 (63.2%) were anemic. In seropositive women, hemoglobin (p=0.04), total WBC (p=0.009), lymphocytes (p=0.005) and neutrophils (p=0.02) were significantly higher, while ferritin was high, but not significant and neutrophils to lymphocytes (p=0.12) and platelets to lymphocytes ratios (p=0.03) were lower. Neonatal outcomes were similar. All RBC parameters and serum ferritin were significantly lower in anemic mothers but not in cord blood, except RDW that was significantly higher in both, maternal (p=0.007) and cord (p=0.008) blood from seropositive anemic group compared to other groups. Placental histology showed significant increase in villous hypervascularity (p=0.000), dilated villous capillaries (p=0.000), and syncytiotrophoblasts (p=0.02) in seropositive group, typically suggesting placental hypoxia. Maternal anemia was not associated with any histological parameters. Univariate and multivariate logistic regression analyses of placental histopathological adverse outcomes showed strong association with SARS-CoV-2 seropositivity but not with maternal anemia. When adjusted for several covariates, including anemia, SARS-CoV-2 seropositivity emerged as independent risk factor for severe chorangiosis (AOR 8.74, 95% CI 3.51-21.76, p<0.000), dilated blood vessels (AOR 12.74, 95% CI 5.46-29.75, p<0.000), syncytiotrophoblasts (AOR 2.86, 95% CI 1.36-5.99, p=0.005) and villus agglutination (AOR 9.27, 95% CI 3.68-23.32, p<0.000). Conclusion: Asymptomatic COVID-19 during pregnancy seemed to be associated with various abnormal placental histopathologic changes related to placental hypoxia independent of maternal anemia status. Our data supports an independent role of SARS-CoV-2 in causing placental hypoxia in pregnant women.


Assuntos
Anemia , COVID-19 , Gravidez , Recém-Nascido , Humanos , Feminino , COVID-19/complicações , COVID-19/epidemiologia , Placenta , Gestantes , Estudos Transversais , SARS-CoV-2 , Centros de Atenção Terciária , Anemia/epidemiologia , Anemia/etiologia , Anticorpos Antivirais
7.
Artigo em Inglês | MEDLINE | ID: mdl-36674296

RESUMO

BACKGROUND/OBJECTIVES: Globally, the COVID-19 pandemic and its prevention and control policies have impacted maternal and child health (MCH) services. This study documents the challenges faced by patients in accessing MCH services, and the experiences of health care providers in delivering those services during the COVID-19 outbreak, explicitly focusing on the lockdown period in India. METHODS: A cross-sectional study (rapid survey) was conducted in 18 districts from 6 states of India during March to June, 2020. The sample size included 540 MCH patients, 18 gynaecologists, 18 paediatricians, 18 district immunisation officers and 108 frontline health workers. Bivariate analysis and multivariable analysis were used to assess the association between sociodemographic characteristics, and challenges faced by the patients. RESULTS: More than one-third of patients (n = 212; 39%) reported that accessing MCH services was a challenge during the lockdown period, with major challenges being transportation-related difficulties (n = 99; 46%) unavailability of hospital-based services (n = 54; 23%) and interrupted outreach health services (n = 39; 18.4%). The supply-side challenges mainly included lack of infrastructural preparedness for outbreak situations, and a shortage of human resources. CONCLUSIONS/RECOMMENDATIONS: A holistic approach is required that focuses on both preparedness and response to the outbreak, as well reassignment and reinforcement of health care professionals to continue catering to and maintaining essential MCH services during the pandemic.


Assuntos
COVID-19 , Serviços de Saúde da Criança , Serviços de Saúde Materna , Criança , Humanos , Feminino , Gravidez , COVID-19/epidemiologia , Estudos Transversais , Pandemias , Controle de Doenças Transmissíveis , Índia/epidemiologia
8.
J Biol Chem ; 286(29): 25778-89, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21613223

RESUMO

Zn²âº is an important cofactor for insulin biosynthesis and storage in pancreatic ß-cells. Correspondingly, polymorphisms in the SLC30A8 gene, encoding the secretory granule Zn²âº transporter ZnT8, are associated with type 2 diabetes risk. Using a genetically engineered (FRET)-based sensor (eCALWY-4), we show here that elevated glucose time-dependently increases free cytosolic Zn²âº ([Zn²âº](cyt)) in mouse pancreatic ß-cells. These changes become highly significant (853 ± 96 pm versus 452 ± 42 pm, p < 0.001) after 24 h and are associated with increased expression of the Zn²âº importer family members Slc39a6, Slc39a7, and Slc39a8, and decreased expression of metallothionein 1 and 2. Arguing that altered expression of the above genes is not due to altered [Zn²âº](cyt), elevation of extracellular (and intracellular) [Zn²âº] failed to mimic the effects of high glucose. By contrast, increases in intracellular cAMP prompted by 3-isobutyl-1-methylxanthine and forskolin partially mimicked the effects of glucose on metallothionein, although not ZiP, gene expression. Modulation of intracellular Ca²âº and insulin secretion with pharmacological agents (tolbutamide and diazoxide) suggested a possible role for changes in these parameters in the regulation of Slc39a6 and Slc39a7 but not Slc39a8, nor metallothionein expression. In summary, 1) glucose induces increases in [Zn²âº](cyt), which are then likely to facilitate the processing and/or the storage of insulin and its cocrystallization with Zn²âº, and 2) these increases are associated with elevated expression of zinc importers. Conversely, a chronic increase in [Zn²âº](cyt) following sustained hyperglycemia may contribute to ß-cell dysfunction and death in some forms of diabetes.


Assuntos
Proteínas de Transporte de Cátions/genética , Citosol/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Células Secretoras de Insulina/citologia , Metalotioneína/genética , Zinco/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , AMP Cíclico/metabolismo , Citosol/metabolismo , Diazóxido/farmacologia , Feminino , Homeostase/efeitos dos fármacos , Homeostase/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Imagem Molecular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Compostos de Sulfonilureia/farmacologia
9.
J Biol Chem ; 286(15): 13647-56, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21335550

RESUMO

The Forkhead box transcription factor FoxO1 regulates metabolic gene expression in mammals. FoxO1 activity is tightly controlled by phosphatidylinositol 3-kinase (PI3K) signaling, resulting in its phosphorylation and nuclear exclusion. We sought here to determine the mechanisms involved in glucose and insulin-stimulated nuclear shuttling of FoxO1 in pancreatic ß cells and its consequences for preproinsulin (Ins1, Ins2) gene expression. Nuclear-localized endogenous FoxO1 translocated to the cytosol in response to elevated glucose (3 versus 16.7 mM) in human islet ß cells. Real-time confocal imaging of nucleo-cytosolic shuttling of a FoxO1-EGFP chimera in primary mouse and clonal MIN6 ß cells revealed a time-dependent glucose-responsive nuclear export, also mimicked by exogenous insulin, and blocked by suppressing insulin secretion. Constitutively active PI3K or protein kinase B/Akt exerted similar effects, while inhibitors of PI3K, but not of glycogen synthase kinase-3 or p70 S6 kinase, blocked nuclear export. FoxO1 overexpression reversed the activation by glucose of pancreatic duodenum homeobox-1 (Pdx1) transcription. Silencing of FoxO1 significantly elevated the expression of mouse Ins2, but not Ins1, mRNA at 3 mM glucose. Putative FoxO1 binding sites were identified in the distal promoter of rodent Ins2 genes and direct binding of FoxO1 to the Ins2 promoter was demonstrated by chromatin immunoprecipitation. A 915-bp glucose-responsive Ins2 promoter was inhibited by constitutively active FoxO1, an effect unaltered by simultaneous overexpression of PDX1. We conclude that nuclear import of FoxO1 contributes to the suppression of Pdx1 and Ins2 gene expression at low glucose, the latter via a previously unsuspected and direct physical interaction with the Ins2 promoter.


Assuntos
Núcleo Celular/metabolismo , Citosol/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/biossíntese , Elementos de Resposta/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Linhagem Celular , Núcleo Celular/genética , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/genética , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Edulcorantes/metabolismo , Edulcorantes/farmacologia , Transativadores/genética , Transativadores/metabolismo
10.
J Biol Chem ; 286(51): 44005-44014, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22065581

RESUMO

PAS kinase (PASK) is a glucose-regulated protein kinase involved in the control of pancreatic islet hormone release and insulin sensitivity. We aimed here to identify mutations in the PASK gene that may be associated with young-onset diabetes in humans. We screened 18 diabetic probands with unelucidated maturity-onset diabetes of the young (MODY). We identified two rare nonsynonymous mutations in the PASK gene (p.L1051V and p.G1117E), each of which was found in a single MODY family. Wild type or mutant PASKs were expressed in HEK 293 cells. Kinase activity of the affinity-purified proteins was assayed as autophosphorylation at amino acid Thr307 or against an Ugp1p-derived peptide. Whereas the PASK p.G1117E mutant displayed a ∼25% increase with respect to wild type PASK in the extent of autophosphorylation, and a ∼2-fold increase in kinase activity toward exogenous substrates, the activity of the p.L1051V mutant was unchanged. Amino acid Gly1117 is located in an α helical region opposing the active site of PASK and may elicit either: (a) a conformational change that increases catalytic efficiency or (b) a diminished inhibitory interaction with the PAS domain. Mouse islets were therefore infected with adenoviruses expressing wild type or mutant PASK and the regulation of insulin secretion was examined. PASK p.G1117E-infected islets displayed a 4-fold decrease in glucose-stimulated (16.7 versus 3 mM) insulin secretion, chiefly reflecting a 4.5-fold increase in insulin release at low glucose. In summary, we have characterized a rare mutation (p.G1117E) in the PASK gene from a young-onset diabetes family, which modulates glucose-stimulated insulin secretion.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Adulto , Animais , Linhagem Celular , Diabetes Mellitus/metabolismo , Genômica , Glucagon/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Secreção de Insulina , Masculino , Proteínas de Membrana/metabolismo , Modelos Genéticos , Mutagênese , Fosforilação , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo
11.
Access Microbiol ; 4(6): acmi000363, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36004362

RESUMO

Modification of DNA bases plays important roles in the epigenetic regulation of eukaryotic gene expression. Among the different types of DNA methylation, 5-methylcytosine (5mC) is common in higher eukaryotes. Although bisulfite sequencing is the established detection method for this modification, newer methods, such as Oxford nanopore sequencing, have been developed as quick and reliable alternatives. An earlier study using sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) indicated the presence of 5mC at very low concentration in Saccharomyces cerevisiae. More recently, a comprehensive study of the yeast genome found 40 5mC sites using the computational tool Nanopolish on nanopore sequencing output raw data. In the present study, we are trying to validate the prediction of the 5mC modifications in yeast with Nanopolish and two other nanopore software tools, Tombo and DeepSignal. Using publicly available genome sequencing data, we compared the open-access computational tools, including Tombo, Nanopolish and DeepSignal, for predicting 5mC. Our results suggest that these tools are indeed capable of predicting DNA 5mC modifications at a specific location from Oxford nanopore sequencing data. We also predicted that 5mC present in the S. cerevisiae genome might be located predominantly at the RDN locus of chromosome 12.

12.
Children (Basel) ; 9(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36291396

RESUMO

Maternal nutritional status and care during pregnancy are essential for adequate birth weight. In this prospective cohort study (N = 1061) in an urban slum, we investigated the association of maternal anthropometry, body composition, gestational weight gain and dietary intakes with low birthweight (LBW, <2.5 kg). About one-third of the women were short (<150 cm), 35% were underweight (<45 kg), 23% suffered from chronic energy deficiency (CED, BMI < 18.5 kg/m2) and another 30% were overweight/obese. The mean age and BMI were 23 years and 21.7 kg/m2, respectively, and haemoglobin was 10.73 g/dL. The mean birthweight (N = 605) was 2.81 ± 0.5 kg, and the average gestational age was 38 ± 2 weeks. About 15% of infants had LBW, and 48% were small for gestational age (SGA). Maternal body composition was assessed by skinfold thickness (SFT) in all trimesters. In the first trimester (N = 762), we found that mean fat-free mass (FFM), fat mass (FM) and body fat percentage (% BF) were 38.86 kg, 11.43 kg and 21.55%, respectively. Low birthweight was significantly associated with preterm deliveries (p < 0.001) and less fat free mass (p = 0.02) in the third trimester. Among other factors were age (p = 0.017), maternal anthropometry (height: p = 0.031; weight: p = 0.059) and fewer antenatal check-ups (p = 0.037). Small size (SGA) was consistently associated with maternal bodyweight at all trimesters (term I, p = 0.013, term II, p = 0.003 and term III, p < 0.001), fat mass in the third trimester (p < 0.001) and maternal height (p = 0.003).

13.
Physiol Plant ; 133(4): 765-75, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18397206

RESUMO

In Arabidopsis, NPR1 (AtNPR1) regulates salicylic acid (SA)-mediated activation of PR genes at the onset of systemic acquired resistance. AtNPR1 also modulates SA-induced suppression of jasmonic acid-responsive gene expression, and npr1 mutants manifest enhanced herbivore resistance. We have raised stable transgenic tobacco lines, expressing AtNPR1 constitutively, which showed elevated expression of PR1 and PR2 genes upon SA treatment. Herbivore bioassays with a generalist polyphagous pest, Spodoptera litura, revealed that the transgenic lines exhibited enhanced resistance compared to the wild-type plants, particularly with respect to younger larval populations. Insect-mediated injury induced several protease inhibitors (PIs), more significantly a 40-kDa serine PI in all the tobacco lines, but the induction was higher in the transgenic plants. We show in this communication that heterologous expression of AtNPR1 provides enhanced resistance to early larval populations of the herbivore, Spodoptera in transgenic tobacco plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Spodoptera/fisiologia , Animais , Bioensaio , Comportamento Alimentar/efeitos dos fármacos , Trato Gastrointestinal/enzimologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Imunidade Inata/efeitos dos fármacos , Larva/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/parasitologia , Plantas Geneticamente Modificadas , Inibidores de Proteases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Salicílico/farmacologia , Spodoptera/efeitos dos fármacos , Nicotiana/imunologia
14.
Biochem J ; 405(2): 287-97, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17402938

RESUMO

Bacillus thuringiensis insecticidal crystal proteins bind to cell-surface receptors which represent a family of aminopeptidases [APN (aminopeptidase N)] present on the brush border membrane of insect midgut cells of susceptible insects leading to pore formation and death of the insect. We report here for the first time the presence of a novel APN in the fat body of the moth Achaea janata. Northern blotting detected at least one APN-specific transcript in the fat body, whereas two transcripts of different sizes were detected in the midgut. We have cloned two full-length APN cDNAs of 3015 bp and 2850 bp from fat body and midgut respectively, which encode proteins of 1004 and 950 amino acids. These two APNs share only 33% amino acid sequence identity, but both display the typical APN features, such as the N-terminal signal peptide, several putative glycosylation sites, C-terminal glycosylphosphatidylinositol anchor signal, the APN-specific zinc-binding/gluzincin motif HEXXHX(18)E and gluzincin motif GAMENWG. The fat body APN manifested a variation in its expression with respect to tissue and developmental stage. In spite of the abundance of the APN transcript in the fat body, fairly low APN activity was detected in this tissue. The fat-body- and midgut-specific APNs showed differential interaction with various Cry1A toxins. Besides, the level of toxicity of different Cry subtypes varied enormously with mode/site of delivery, such as intrahaemocoelic injections and feeding bioassays. These data indicate that the fat body might be a potential alternative Cry toxin target site in the moth.


Assuntos
Aminopeptidases/isolamento & purificação , Proteínas de Insetos/fisiologia , Mariposas/enzimologia , Receptores de Superfície Celular/fisiologia , Sequência de Aminoácidos , Aminopeptidases/química , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Antígenos CD13/química , Antígenos CD13/isolamento & purificação , Clonagem Molecular , Endotoxinas/farmacologia , Corpo Adiposo/enzimologia , Glicosilfosfatidilinositóis/análise , Proteínas Hemolisinas/farmacologia , Immunoblotting , Larva/enzimologia , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Distribuição Tecidual
15.
J Genet ; 85(2): 133-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17072082

RESUMO

We have previously reported correction of severe leaf chlorosis in the cytoplasmic male sterile Ogura (also called Ogu) Brassica juncea line carrying Ogura cytoplasm by plastid substitution via protoplast fusion. Two cybrids obtained from the fusion experiment, Og1 and Og2, were green and carried the plastid genome of B. juncea cv. RLM198. While Og1 displayed normal flower morphology comparable to that of its euplasmic B. juncea counterpart except for sterile anthers, Og2 retained homeotic-like floral modification of stamens to petal-like structures and several other floral deformities observed in the chlorotic (Ogu) B. juncea cv. RLM198 (or OgRLM). With respect to the mitochondrial genome, Og1 showed 81% genetic similarity to the fertile cultivar RLM while Og2 showed 93% similarity to OgRLM. In spite of recombination and rearrangements in the mitochondrial genomes in the cybrids, expression patterns of 10 out of 11 mitochondrial genes were similar in all the three CMS lines; the only exception was atp6, whose expression was altered. While Og1 showed normal atp6 transcript similar to that in RLM, in Og2 and OgRLM weak expression of a longer transcript was detected. These results suggest that the homeotic-like changes in floral patterning leading to petaloid stamens in Og2 and OgRLM may be associated with aberrant mitochondrial gene expression.


Assuntos
Brassica/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Genes Mitocondriais , Infertilidade das Plantas/genética , Northern Blotting , Brassica/anatomia & histologia , Citoplasma/metabolismo , Flores/anatomia & histologia , Genes de Plantas , Proteínas de Plantas , Polimorfismo de Fragmento de Restrição
16.
Mol Endocrinol ; 30(1): 77-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26584158

RESUMO

Zinc transporter 8 (ZnT8), encoded by SLC30A8, is chiefly expressed within pancreatic islet cells, where it mediates zinc (Zn(2+)) uptake into secretory granules. Although a common nonsynonymous polymorphism (R325W), which lowers activity, is associated with increased type 2 diabetes (T2D) risk, rare inactivating mutations in SLC30A8 have been reported to protect against T2D. Here, we generate and characterize new mouse models to explore the impact on glucose homeostasis of graded changes in ZnT8 activity in the ß-cell. Firstly, Slc30a8 was deleted highly selectively in these cells using the novel deleter strain, Ins1Cre. The resultant Ins1CreZnT8KO mice displayed significant (P < .05) impairments in glucose tolerance at 10 weeks of age vs littermate controls, and glucose-induced increases in circulating insulin were inhibited in vivo. Although insulin release from Ins1CreZnT8KO islets was normal, Zn(2+) release was severely impaired. Conversely, transgenic ZnT8Tg mice, overexpressing the transporter inducibly in the adult ß-cell using an insulin promoter-dependent Tet-On system, showed significant (P < .01) improvements in glucose tolerance compared with control animals. Glucose-induced insulin secretion from ZnT8Tg islets was severely impaired, whereas Zn(2+) release was significantly enhanced. Our findings demonstrate that glucose homeostasis in the mouse improves as ß-cell ZnT8 activity increases, and remarkably, these changes track Zn(2+) rather than insulin release in vitro. Activation of ZnT8 in ß-cells might therefore provide the basis of a novel approach to treating T2D.


Assuntos
Proteínas de Transporte de Cátions/genética , Intolerância à Glucose/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Intolerância à Glucose/metabolismo , Homeostase , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Vesículas Secretórias/metabolismo , Transportador 8 de Zinco
17.
EMBO Mol Med ; 7(6): 802-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25828351

RESUMO

The metabolic syndrome covers metabolic abnormalities including obesity and type 2 diabetes (T2D). T2D is characterized by insulin resistance resulting from both environmental and genetic factors. A genome-wide association study (GWAS) published in 2010 identified TP53INP1 as a new T2D susceptibility locus, but a pathological mechanism was not identified. In this work, we show that mice lacking TP53INP1 are prone to redox-driven obesity and insulin resistance. Furthermore, we demonstrate that the reactive oxygen species increase in TP53INP1-deficient cells results from accumulation of defective mitochondria associated with impaired PINK/PARKIN mitophagy. This chronic oxidative stress also favors accumulation of lipid droplets. Taken together, our data provide evidence that the GWAS-identified TP53INP1 gene prevents metabolic syndrome, through a mechanism involving prevention of oxidative stress by mitochondrial homeostasis regulation. In conclusion, this study highlights TP53INP1 as a molecular regulator of redox-driven metabolic syndrome and provides a new preclinical mouse model for metabolic syndrome clinical research.


Assuntos
Síndrome Metabólica/fisiopatologia , Mitofagia , Proteínas Nucleares/metabolismo , Animais , Modelos Animais de Doenças , Resistência à Insulina , Camundongos , Proteínas Nucleares/deficiência , Obesidade , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/análise
18.
ACS Chem Biol ; 9(9): 2111-20, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25011072

RESUMO

Zinc (Zn2+) ions are increasingly recognized as playing an important role in cellular physiology. Whereas the free Zn2+ concentration in the cytosol has been established to be 0.1-1 nM, the free Zn2+ concentration in subcellular organelles is not well-established. Here, we extend the eCALWY family of genetically encoded Förster Resonance Energy Transfer (FRET) Zn2+ probes to permit measurements in the endo(sarco)plasmic reticulum (ER) and mitochondrial matrix. Deployed in a variety of mammalian cell types, these probes reveal resting mitochondrial free [Zn2+] values of ∼300 pM, somewhat lower than in the cytosol but 3 orders of magnitude higher than recently reported using an alternative FRET-based sensor. By contrast, free ER [Zn2+] was found to be ≥5 nM, which is >5000-fold higher than recently reported but consistent with the proposed role of the ER as a mobilizable Zn2+ store. Treatment of ß-cells or cardiomyocytes with sarco(endo)plasmic reticulum Ca2+-ATPase inhibitors, mobilization of ER Ca2+ after purinergic stimulation with ATP, or manipulation of ER redox, exerted no detectable effects on [Zn2+]ER. These findings question the previously proposed role of Ca2+ in Zn2+ mobilization from the ER and suggest that high ER Zn2+ levels may be an important aspect of cellular homeostasis.


Assuntos
Retículo Endoplasmático/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Mitocôndrias/metabolismo , Zinco/metabolismo , Animais , Técnicas Biossensoriais , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Células Cultivadas , Citosol/metabolismo , Células HeLa/metabolismo , Humanos , Indóis/farmacologia , Células Secretoras de Insulina/metabolismo , Camundongos Endogâmicos C57BL , Sondas Moleculares , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Diabetes ; 61(3): 574-85, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22338092

RESUMO

Carbohydrate-responsive element-binding protein (ChREBP) is a regulator of pancreatic ß-cell gene expression and an important mediator of glucotoxicity. Glucose increases the activity and nuclear localization of ChREBP by still ill-defined mechanisms. Here we reveal, using both MIN6 and primary mouse ß-cells, a unique mechanism behind ChREBP nuclear translocation. At low glucose concentrations, ChREBP interacts with sorcin, a penta EF hand Ca(2+) binding protein, and is sequestered in the cytosol. Sorcin overexpression inhibits ChREBP nuclear accumulation at high glucose and reduced the activity of L-type pyruvate kinase (L-PK) and TxNIP promoters, two well-characterized ChREBP target genes. Sorcin inactivation by RNA interference increases ChREBP nuclear localization and in vivo binding to the L-PK promoter at low glucose concentrations. Ca(2+) influx was essential for this process since Ca(2+) chelation with EGTA, or pharmacological inhibition with diazoxide and nifedipine, blocked the effects of glucose. Conversely, mobilization of intracellular Ca(2+) with ATP caused the nuclear accumulation of ChREBP. Finally, sorcin silencing inhibited ATP-induced increases in intracellular Ca(2+) and glucose-stimulated insulin secretion. We therefore conclude that sorcin retains ChREBP in the cytosol at low glucose concentrations and may act as a Ca(2+) sensor for glucose-induced nuclear translocation and the activation of ChREBP-dependent genes.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Cálcio/metabolismo , Núcleo Celular/metabolismo , Glucose/fisiologia , Células Secretoras de Insulina/metabolismo , Células Cultivadas , Humanos , Estresse Oxidativo
20.
J Endocrinol ; 213(2): 115-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22402852

RESUMO

Carbohydrate-responsive element binding protein (ChREBP (MLXIPL)) is emerging as an important mediator of glucotoxity both in the liver and in the pancreatic ß-cells. Although the regulation of its nuclear translocation and transcriptional activation by glucose has been the subject of intensive research, it is still not fully understood. We have recently uncovered a novel mechanism in the excitable pancreatic ß-cell where ChREBP interacts with sorcin, a penta-EF-hand Ca(2)(+)-binding protein, and is sequestered in the cytosol at low glucose concentrations. Upon stimulation with glucose and activation of Ca(2)(+) influx, or application of ATP as an intracellular Ca(2)(+)-mobilising agent, ChREBP rapidly translocates to the nucleus. In sorcin-silenced cells, ChREBP is constitutively present in the nucleus, and both glucose and Ca(2)(+) are ineffective in stimulating further ChREBP nuclear shuttling. Whether an active Ca(2)(+)-sorcin element of ChREBP activation also exists in non-excitable cells is discussed.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Cátions Bivalentes/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Glucose/fisiologia , Humanos , Células Secretoras de Insulina/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA