Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Semin Cell Dev Biol ; 76: 101-111, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28919309

RESUMO

The definition of a Cajal-Retzius neuron (CRN) is still controversial, in part possibly due to species differences. We review the developmental history of CRN in human neocortex and focus on two main CRN family members, transient (t) and persisting (p) CRN. They share the expression of Reelin andTbr1, complemented by p73, calretinin, CXCR4 and NOS, but differ in their moment of appearance, fate and morphology. The distinctive feature of tCRN is the axon plexus in the lower third of the marginal zone, which innervates the apical dendritic tufts of pyramidal cells and may serve as a migration substrate and waiting compartment for interneurons descending from the subpial granular layer (SGL) into the cortical plate. Around midgestation, the SGL also gives rise to a transient interneuron type, the miniature neuron, that provides the GABAergic innervation of tCRN, which eventually, through diverse signaling pathways involving p73, contribute to the demise of tCRN and the breakdown of their plexus. The pCRN appear in the last trimester of gestation and may derive from committed CRN progenitors which migrate with the SGL from the periolfactory forebrain. They lack the horizontal CR plexus, and may be implicated in cortical folding, distribution of blood vessels, and plasticity of microcircuits in the molecular layer.


Assuntos
Córtex Cerebral/embriologia , Neurônios/metabolismo , Humanos , Proteína Reelina
2.
J Anat ; 235(3): 569-589, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30861578

RESUMO

Cajal-Retzius neurons (CRN) are the main source of Reelin in the marginal zone of the developing neocortex and hippocampus (HC). They also express the transcription factor p73 and are complemented by later-appearing GABAergic Reelin+ interneurons. The human dorsal HC forms at gestational week 10 (GW10), when it develops a rudimentary Ammonic plate and incipient dentate migration, although the dorsal hippocampal fissure (HF) remains shallow and contains few CRN. The dorsal HC transforms into the indusium griseum (IG), concurrently with the rostro-caudal appearance of the corpus callosum, by GW14-17. Dorsal and ventral HC merge at the site of the former caudal hem, which is located at the level of the future atrium of the lateral ventricle and closely connected with the choroid plexus. The ventral HC forms at GW11 in the temporal lobe. The ventral HF is wide open at GW14-16 and densely populated by large numbers of CRNs. These are in intimate contact with the meninges and meningeal blood vessels, suggesting signalling through diverse pathways. At GW17, the fissure deepens and begins to fuse, although it is still marked by p73/Reelin+ CRNs. The p73KO mouse illustrates the importance of p73 in CRN for HF formation. In the mutant, Tbr1/Reelin+ CRNs are born in the hem but do not leave it and subsequently disappear, so that the mutant cortex and HC lack CRN from the onset of corticogenesis. The HF is absent, which leads to profound architectonic alterations of the HC. To determine which p73 isoform is important for HF formation, isoform-specific TAp73- and DeltaNp73-deficient embryonic and early postnatal mice were examined. In both mutants, the number of CRNs was reduced, but each of their phenotypes was much milder than in the global p73KO mutant missing both isoforms. In the TAp73KO mice, the HF of the dorsal HC failed to form, but was present in the ventral HC. In the DeltaNp73KO mice, the HC had a mild patterning defect along with a shorter HF. Complex interactions between both isoforms in CRNs may contribute to their crucial activity in the developing brain.


Assuntos
Hipocampo/embriologia , Proteína Tumoral p73/fisiologia , Animais , Hipocampo/citologia , Humanos , Lobo Límbico/embriologia , Camundongos Knockout , Neurônios/fisiologia , Proteína Reelina
3.
Cereb Cortex ; 28(6): 2043-2058, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472243

RESUMO

Neurons of the subpial granular layer (SGL) in the human marginal zone (MZ) migrate tangentially from the periolfactory subventricular zone all over the neocortex. After an immature stage, from 14 to 18 gestational weeks (GW), the SGL attains maximum prominence around midgestation. At 20-25 GW, a transient miniature cell type in the MZ expresses glutamate decarboxylase (GAD) and calretinin, and extends a varicose plexus surrounding somata of large transient Cajal-Retzius neurons (tCRN), potentially modulating their activity. The compact Reelin+ horizontal axon plexus of tCRN forms a transient interface between cortical plate and MZ; it may serve as a migration substrate for cortical interneurons, and attracting NPY+ fibers from the subplate. Around 30 GW, after the disappearance of SGL and tCRN, a population of persisting Cajal-Retzius neurons (pCRN) appears and remains into adult life. pCRNs express Reelin, Tbr1, calretinin, nitric oxide synthase, and the cytokine receptor CXCR4. They are characterized by subpial location, closeness to blood vessels, and aggregation in the walls of developing sulci. Unlike tCRNs, pCRNs do not develop a compact axon plexus in the lower MZ. Occasional mitoses in the midgestation SGL suggest that CRN progenitor cells may give rise to late-appearing pCRNs populating the definitive molecular layer.


Assuntos
Córtex Cerebral/embriologia , Interneurônios/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Feto , Humanos , Proteína Reelina
4.
Cereb Cortex ; 24(5): 1361-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23307637

RESUMO

Early brain development is regulated by the coordinated actions of multiple signaling centers at key boundaries between compartments. Three telencephalic midline structures are in a position to play such roles in forebrain patterning: The cortical hem, the septum, and the thalamic eminence at the diencephalic-telencephalic boundary. These structures express unique complements of signaling molecules, and they also produce distinct populations of Cajal-Retzius cells, which are thought to act as "mobile patterning units," migrating tangentially to cover the telencephalic surface. We show that these 3 structures require the transcription factor Lhx2 to delimit their extent. In the absence of Lhx2 function, all 3 structures are greatly expanded, and the Cajal-Retzius cell population is dramatically increased. We propose that the hem, septum, and thalamic eminence together form a "forebrain hem system" that defines and regulates the formation of the telencephalic midline. Disruptions in the forebrain hem system may be implicated in severe brain malformations such as holoprosencephaly. Lhx2 functions as a central regulator of this system's development. Since all components of the forebrain hem system have been identified across several vertebrate species, the mechanisms that regulate them may have played a fundamental role in driving key aspects of forebrain evolution.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas com Homeodomínio LIM/metabolismo , Vias Neurais/embriologia , Vias Neurais/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Fatores Etários , Animais , Evolução Biológica , Bromodesoxiuridina/metabolismo , Diferenciação Celular , Embrião de Mamíferos , Feto , Humanos , Antígeno Ki-67/metabolismo , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Mutação/genética , Prosencéfalo/citologia , Fatores de Transcrição/genética
5.
J Neurosci ; 33(16): 6877-84, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595746

RESUMO

Eye formation is regulated by a complex network of eye field transcription factors (EFTFs), including LIM-homeodomain gene LHX2. We disrupted LHX2 function at different stages during this process using a conditional knock-out strategy in mice. We find that LHX2 function is required in an ongoing fashion to maintain optic identity across multiple stages, from the formation of the optic vesicle to the differentiation of the neuroretina. At each stage, loss of Lhx2 led to upregulation of a set of molecular markers that are normally expressed in the thalamic eminence and in the anterodorsal hypothalamus in a portion of the optic vesicle or retina. Furthermore, the longer LHX2 function was maintained, the further optic morphogenesis progressed. Early loss of function caused profound mispatterning of the entire telencephalic-optic-hypothalamic field, such that the optic vesicle became mispositioned and appeared to arise from the diencephalic-telencephalic boundary. At subsequent stages, loss of Lhx2 did not affect optic vesicle position but caused arrest of optic cup formation. If Lhx2 was selectively disrupted in the neuroretina from E11.5, the neuroretina showed gross dysmorphology along with aberrant expression of markers specific to the thalamic eminence and anterodorsal hypothalamus. Our findings indicate a continual requirement for LHX2 throughout the early stages of optic development, not only to maintain optic identity by suppressing alternative fates but also to mediate multiple steps of optic morphogenesis. These findings provide new insight into the anophthalmic phenotype of the Lhx2 mutant and reveal novel roles for this transcription factor in eye development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas com Homeodomínio LIM/metabolismo , Morfogênese/genética , Organogênese/genética , Fatores de Transcrição/metabolismo , Vias Visuais/fisiologia , Fatores Etários , Animais , Padronização Corporal/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas/genética , RNA não Traduzido , Proteínas Repressoras/metabolismo , Retina/anormalidades , Retina/patologia , Tamoxifeno/farmacologia , Fatores de Transcrição/genética , Vias Visuais/embriologia
6.
Brain Struct Funct ; 228(3-4): 947-966, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37000250

RESUMO

Myelination of the neocortex of altricial species is mostly a postnatal event, and the appearance of myelin has been associated with the end of the critical period for ocular dominance plasticity in rodent visual cortex. Due to their precocality, ungulates may tell a different story. Here, we analyzed the development of PDGFRα positive oligodendrocyte precursor cells and expression of myelin proteins in the laminar compartments of fetal and postnatal porcine cortex from E45 onwards. Precursor cell density initially increased and then decreased but remained present at P90. MAG and MBP staining were detectable at E70 in subventricular zone and deep white matter, ascending into gyral white matter at E85, and into the gray matter and marginal zone at E100 (birth in pig at E114). Protein blots confirmed the declining expression of PDGFRα from E65 onwards, and the increase of MBP and MAG expression from E80 onwards. Somatosensory input elicited by spontaneous activity is considered important for the formation of the body representation. Indeed, PDGFRα, MBP and MAG expression started earlier in somatosensory than in visual cortex. Taken together, myelination proceeded in white and gray matter and marginal zone of pig cortex before birth with an areal-specific time course, and an almost mature pattern was present at P5 in visual cortex.


Assuntos
Bainha de Mielina , Neocórtex , Animais , Suínos , Bainha de Mielina/metabolismo , Neocórtex/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas da Mielina/metabolismo , Sus scrofa , Oligodendroglia/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(39): 16871-6, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19805388

RESUMO

Apoptosis occurs widely during brain development, and p73 transcription factors are thought to play essential roles in this process. The p73 transcription factors are present in two forms, the full length TAp73 and the N-terminally truncated DeltaNp73. In cultured sympathetic neurons, overexpression of DeltaNp73 inhibits apoptosis induced by nerve growth factor withdrawal or p53 overexpression. To probe the function of DeltaNp73 in vivo, we generated a null allele and inserted sequences encoding the recombinase Cre and green fluorescent protein (EGFP). We show that DeltaNp73 is heavily expressed in the thalamic eminence (TE) that contributes neurons to ventral forebrain, in vomeronasal neurons, Cajal-Retzius cells (CRc), and choroid plexuses. In DeltaNp73(-/-) mice, cells in preoptic areas, vomeronasal neurons, GnRH-positive cells, and CRc were severely reduced in number, and choroid plexuses were atrophic. This phenotype was enhanced when DeltaNp73-positive cells were ablated by diphtheria toxin expression. However, ablation of cells that express DeltaNp73 and Wnt3a did neither remove all CRc, nor did they abolish Reelin secretion or generate a reeler-like cortical phenotype. Our data emphasize the role of DeltaNp73 in neuronal survival in vivo and in choroid plexus development, the importance of the TE as a source of neurons in ventral forebrain, and the multiple origins of CRc, with redundant production of Reelin.


Assuntos
Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Morte Celular , Sobrevivência Celular , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteína Reelina , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
8.
J Comp Neurol ; 530(9): 1341-1362, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34817865

RESUMO

Knowledge on cortical development is based mainly on rodents besides primates and carnivores, all being altricial. Here, we analyzed a precocial animal, the pig, looking at dorsoparietal cortex from E45 to P90. At E45, most ionized calcium-binding adapter molecule 1-positive (Iba1+) cells had a macrophage-like morphology and resided in meninges and choroid plexus. Only a few cells were scattered in the ventricular and subventricular zone (VZ and SVZ). At E60/E70, all laminar compartments displayed microglia cells at a low-to-moderate density, being highest in VZ and SVZ followed by intermediate zone/white matter (IZ/WM). The cortical plate and marginal zone displayed only a few Iba1+ cells. Cells were intensely labeled, but still had poorly arborized somata and many resembled ameboid, macrophage-like microglia. Concurrent with a massive increase in cortical volume, microglia cell density increased until E85, and further until E100/E110 (birth at E114) to densities that resemble those seen postnatally. A fraction of microglia colabeled with Ki67 suggesting proliferation in all laminar compartments. Cell-to-cell distance decreased substantially during this time, and the fraction of microglia to all nuclei and to neurons increases in the laminar compartments. Eventually, of all cortical DAPI+ nuclei 7-12% were Iba1+ microglia. From E70 onwards, more and more cells with ramified processes were present in MZ down to IZ/WM, showing, for instance, a close association with NeuN+, NPY+, and GAD65/67+ somata and axon initial segments. These results suggested that the development of microglia cell density and morphology proceeds rapidly from mid-gestation onwards reaching near-adult status already before birth.


Assuntos
Neocórtex , Animais , Feto , Microglia , Neurônios , Sus scrofa , Suínos
9.
Elife ; 112022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35441590

RESUMO

The canonical view of neuronal function is that inputs are received by dendrites and somata, become integrated in the somatodendritic compartment and upon reaching a sufficient threshold, generate axonal output with axons emerging from the cell body. The latter is not necessarily the case. Instead, axons may originate from dendrites. The terms 'axon carrying dendrite' (AcD) and 'AcD neurons' have been coined to describe this feature. In rodent hippocampus, AcD cells are shown to be functionally 'privileged', since inputs here can circumvent somatic integration and lead to immediate action potential initiation in the axon. Here, we report on the diversity of axon origins in neocortical pyramidal cells of rodent, ungulate, carnivore, and primate. Detection methods were Thy-1-EGFP labeling in mouse, retrograde biocytin tracing in rat, cat, ferret, and macaque, SMI-32/ßIV-spectrin immunofluorescence in pig, cat, and macaque, and Golgi staining in macaque and human. We found that in non-primate mammals, 10-21% of pyramidal cells of layers II-VI had an AcD. In marked contrast, in macaque and human, this proportion was lower and was particularly low for supragranular neurons. A comparison of six cortical areas (being sensory, association, and limbic in nature) in three macaques yielded percentages of AcD cells which varied by a factor of 2 between the areas and between the individuals. Unexpectedly, pyramidal cells in the white matter of postnatal cat and aged human cortex exhibit AcDs to much higher percentages. In addition, interneurons assessed in developing cat and adult human cortex had AcDs at type-specific proportions and for some types at much higher percentages than pyramidal cells. Our findings expand the current knowledge regarding the distribution and proportion of AcD cells in neocortex of non-primate taxa, which strikingly differ from primates where these cells are mainly found in deeper layers and white matter.


Assuntos
Neocórtex , Idoso , Animais , Axônios/fisiologia , Dendritos/fisiologia , Furões , Haplorrinos , Humanos , Camundongos , Células Piramidais , Ratos , Suínos
10.
J Anat ; 217(4): 334-43, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20626498

RESUMO

Cajal-Retzius (CR) cells are the most significant source of reelin, an extracellular matrix glycoprotein essential for cortical development. Strategically located in the marginal zone, CR cells control radial migration and laminar positioning of pyramidal neurons of the cortical plate. They degenerate and undergo cell death when cortical migration is completed. In human cortex development, reelin-expressing CR cells are already present in the early preplate, and continue to increase in number after the appearance of the cortical plate. In the course of the first half of gestation, the reelin signal in the marginal zone undergoes a huge amplification in parallel with the growth of the cortical plate and the expansion of the cortical surface. A significant source of CR cells is the cortical hem, a putative signalling centre at the interface of the prospective hippocampus and the choroid plexus. Hem-derived CR cells co-express reelin and p73, a transcription factor of the p53-family. They form the predominant CR cell population of the human neocortex. Characteristically, CR cells express the anti-apoptotic isoform DeltaNp73 which may be responsible for the protracted lifespan of human CR cells and the morphological differentiation of their axonal plexus. This dense fibre plexus, absent in lower mammals, amplifies the reelin-signal and establishes a physical boundary between the cortical plate and the marginal zone. In this review, we analyze the multiple sources of reelin/p73 positive CR cells at the interface of various telencephalic centres and the choroid plexus of the lateral ventricles. Additional populations of CR cells may derive from the thalamic eminence in the ventral thalamus and from the strionuclear neuroepithelium, or 'amygdalar hem'. Comparative studies in a variety of species indicate that the cortical hem is the main origin of CR cells destined for the neocortex, and is most highly developed in the human brain. The close association between cortical hem and choroid plexus suggests a concerted role in the evolutionary increase of CR cells, amplification of the reelin signal in the marginal zone, and cortical expansion.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Plexo Corióideo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Serina Endopeptidases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Plexo Corióideo/patologia , Hipocampo/patologia , Humanos , Proteína Reelina , Proteína Tumoral p73
11.
Mol Cell Neurosci ; 42(3): 172-83, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19595769

RESUMO

Voltage-dependent anion channel (VDAC) is a mitochondrial porin also found in the neuronal membrane (pl-VDAC), where its function may be related to redox homeostasis and apoptosis. Murine models have evidenced pl-VDAC into caveolae in a complex with estrogen receptor alpha (mERalpha), which participates in neuroprotection against amyloid beta (Abeta), and whose integration into this hydrophobic domain remains unclear. Here, we have demonstrated in caveolae of human cortex and hippocampus the presence of pl-VDAC and mERalpha, in a complex with scaffolding caveolin-1 which likely provides mERalpha stability at the plasma membrane. In Alzheimer's disease (AD) brains, VDAC was accumulated in caveolae, and it was observed in dystrophic neurites of senile plaques, whereas ERalpha was expressed in astrocytes surrounding the plaques. Together with previous data in murine neurons demonstrating the participation of pl-VDAC in Abeta-induced neurotoxicity, these data suggest that the channel may be involved in membrane dysfunctioning observed in AD neuropathology.


Assuntos
Doença de Alzheimer , Cavéolas/metabolismo , Córtex Cerebral , Receptor alfa de Estrogênio/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia
12.
Brain Struct Funct ; 223(8): 3855-3873, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30094604

RESUMO

Knowledge on cortical development is based mainly on small rodents besides primates and carnivores, all being altricial nestlings. Ungulates are precocial and born with nearly mature sensory and motor systems. Almost no information is available on ungulate brain development. Here, we analyzed European wild boar cortex development, focusing on the neuropeptide Y immunoreactive (NPY-ir) neuron system in dorsoparietal cortex from E35 to P30. Transient NPY-ir neuron types including archaic cells of the cortical plate and axonal loop cells of the subplate which appear by E60 concurrent with the establishment of the ungulate brain basic sulcal pattern. From E70, NPY-ir axons have an axon initial segment which elongates and shifts closer towards the axon's point of origin until P30. From E85 onwards (birth at E114), NPY-ir neurons in cortical layers form basket cell-like local and Martinotti cell-like ascending axonal projections. The mature NPY-ir pattern is recognizable at E110. Together, morphologies are conserved across species, but timing is not: in pig, the adult pattern largely forms prenatally.


Assuntos
Neocórtex/embriologia , Neurônios/fisiologia , Neuropeptídeo Y/metabolismo , Animais , Axônios , Feminino , Masculino , Neocórtex/citologia , Neurônios/citologia , Neurônios/metabolismo , Sus scrofa/embriologia
13.
J Comp Neurol ; 503(6): 790-802, 2007 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-17570500

RESUMO

The expression of estrogen receptors (ERs) in the developing and adult human brain has not been clearly established, although estrogens are crucial for neuronal differentiation, synapse formation, and cognitive functions. By using immunohistochemistry, we have studied the distribution of ER alpha and ER beta in human cerebral cortex and hippocampus from early prenatal stages to adult life. ER alpha was detected in the cortex at 9 gestational weeks (GW), with a high expression in proliferating zones and the cortical plate. The staining intensity decreased gradually during prenatal development but increased again from birth to adulthood. In contrast, ER beta was first detected at 15 GW in proliferating zones, and at 16/17 GW, numerous ER beta immunopositive cells were also observed in the cortical plate. ER beta expression persisted in the adult cortex, being widely distributed throughout cortical layers II-VI. In addition, from around 15 GW to adulthood, ER alpha and ER beta were expressed in human hippocampus mainly in pyramidal cells of Ammon's horn and in the dentate gyrus. Western blotting and immunohistochemistry in the adult cerebral cortex and hippocampus revealed lower protein expression of ER alpha compared with ER beta. Double immunostaining showed that during fetal life both ERs are expressed in neurons as well as in radial glia, although only ER alpha is expressed in the Cajal-Retzius neurons of the marginal zone. These observations demonstrate that the expression of ER alpha and ER beta displays different spatial-temporal patterns during human cortical and hippocampal development and suggest that both ERs may play distinct roles in several processes related to prenatal brain development.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Adolescente , Adulto , Western Blotting , Feminino , Feto , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/metabolismo
14.
J Comp Neurol ; 500(2): 239-54, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17111359

RESUMO

Mutated doublecortin (DCX) gives rise to severe abnormalities in human cortical development. Adult Dcx knockout mice show no major neocortical defects but do have a disorganized hippocampus. We report here the developmental basis of these hippocampal abnormalities. A heterotopic band of neurons was identified starting at E17.5 in the CA3 region and progressing throughout the CA1 region by E18.5. At neonatal stages, the CA1 heterotopic band was reduced, but the CA3 band remained unchanged, continuing into adulthood. Thus, in mouse, migration of CA3 neurons is arrested during development, whereas CA1 cell migration is retarded. On the Sv129Pas background, magnetic resonance imaging (MRI) also suggested abnormal dorsal hippocampal morphology, displaced laterally and sometimes rostrally and associated with medial brain structure abnormalities. MRI and cryosectioning showed agenesis of the corpus callosum in Dcx knockout mice on this background and an intermediate, partial agenesis in heterozygote mice. Wild-type littermates showed no callosal abnormalities. Hippocampal and corpus callosal abnormalities were also characterized in DCX-mutated human patients. Severe hippocampal hypoplasia was identified along with variable corpus callosal defects ranging from total agenesis to an abnormally thick or thin callosum. Our data in the mouse, identifying roles for Dcx in hippocampal and corpus callosal development, might suggest intrinsic roles for human DCX in the development of these structures.


Assuntos
Agenesia do Corpo Caloso , Hipocampo/anormalidades , Proteínas Associadas aos Microtúbulos/genética , Malformações do Sistema Nervoso/diagnóstico , Neuropeptídeos/genética , Feto Abortado , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Coristoma/diagnóstico , Coristoma/genética , Coristoma/metabolismo , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Predisposição Genética para Doença/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo
15.
Adv Anat Embryol Cell Biol ; 189: 1 p preceding 1, 1-111, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17212070

RESUMO

The early steps in corticogenesis are decisive for the correct unfolding of neurogenesis, neuronal migration and differentiation under tight genetic control. In this monograph, we outline the main events in human preplate formation, the gradual transformation of the preplate into the cortical plate, and the establishment of the transient compartments of the foetal cortical wall. The main neuronal populations of the embryonic and fetal cortex are presented according to their timetable of appearance and the expression of developmentally relevant gene products, with the main focus on members of the Reelin-Dab1 signalling pathway, LIS1 and Doublecortin, all of which are crucial for cortical migration. The often significant developmental differences between the lissencephalic rodent brain, which has become the prevailing model of corticogenesis, and the highly differentiated, gyrated human brain are pointed out and discussed.


Assuntos
Movimento Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/metabolismo , Diferenciação Celular/genética , Córtex Cerebral/metabolismo , Humanos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Proteína Reelina , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
16.
Brain Res ; 1132(1): 59-70, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17189620

RESUMO

Cajal-Retzius (CR) cells of the mammalian neocortex co-express the extracellular matrix protein Reelin and p73, a transcription factor involved in cell death and survival. Most neocortical CR cells derive from the cortical hem, with minor additional sources. We analyzed the distribution of Reelin and p73 immunoreactive (ir) neurons in the telencephalon of Lacerta galloti from early embryonic stages to hatching. Numerous Reelin-ir cells appeared in the pallial MZ from the preplate stage onward. Conversely, p73-ir cells were rare in the pallial preplate and not observed in the cortical plate. Subpallial p73-ir cells spread from the septum and the telencephalic-diencephalic boundary to the pial surface of the basal forebrain and amygdala, respectively, where they co-expressed Reelin and p73. A small group of Reelin/p73-ir CR cells appeared in a rudimentary cortical hem at the interface of the medial cortex and choroid plexus. Comparison with early embryonic stages of mice and humans showed similar foci of p73-ir cells in the septum and at the telencephalic-diencephalic boundary and revealed an increasing prominence of the cortical hem, in parallel with increasing numbers of neocortical Reelin/p73 positive CR cells, which attain highest differentiation in the human brain. Our data show that Reelin-expression in the pallium is evolutionarily conserved and independent of a cortical hem, and suggest that p73 in the cortical hem may be involved in the evolutionary increase in number and complexity of the mammalian neocortical CR cells.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Lagartos/embriologia , Lagartos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Serina Endopeptidases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Evolução Biológica , Diferenciação Celular/fisiologia , Evolução Molecular , Humanos , Imuno-Histoquímica , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Filogenia , Proteína Reelina , Núcleos Septais/citologia , Núcleos Septais/embriologia , Núcleos Septais/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Telencéfalo/embriologia , Telencéfalo/metabolismo , Proteína Tumoral p73
17.
Front Neuroanat ; 11: 111, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259547

RESUMO

The human insular lobe, in the depth of the Sylvian fissure, displays three main cytoarchitectonic divisions defined by the differentiation of granular layers II and IV. These comprise a rostro-ventral agranular area, an intermediate dysgranular area, and a dorso-caudal granular area. Immunohistochemistry in human embryos and fetuses using antibodies against PCNA, Vimentin, Nestin, Tbr1, and Tb2 reveals that the insular cortex is unique in that it develops far away from the ventricular zone (VZ), with most of its principal neurons deriving from the subventricular zone (SVZ) of the pallial-subpallial boundary (PSB). In human embryos (Carnegie stage 16/17), the rostro-ventral insula is the first cortical region to develop; its Tbr1+ neurons migrate from the PSB along the lateral cortical stream. From 10 gestational weeks (GW) onward, lateral ventricle, ganglionic eminences, and PSB grow forming a C-shaped curvature. The SVZ of the PSB gives rise to a distinct radial glia fiber fascicle (RGF), which courses lateral to the putamen in the external capsule. In the RGF, four components can be established: PF, descending from the prefrontal PSB to the anterior insula; FP, descending from the fronto-parietal PSB toward the intermediate insula; PT, coursing from the PSB near the parieto-temporal junction to the posterior insula, and T, ascending from the temporal PSB and merging with components FP and PT. The RGF fans out at different dorso-ventral and rostro-caudal levels of the insula, with descending fibers predominating over ascending ones. The RGF guides migrating principal neurons toward the future agranular, dysgranular, and granular insular areas, which show an adult-like definition at 32 GW. Despite the narrow subplate, and the absence of an intermediate zone except in the caudal insula, most insular subdivisions develop into a 6-layered isocortex, possibly due to the well developed outer SVZ at the PSB, which is particularly prominent at the level of the dorso-caudal insula. The small size of the initial PSB sector may, however, determine the limited surface expansion of the insula, which is in contrast to the exuberant growth of the opercula deriving from the adjacent frontal-parietal and temporal VZ/SVZ.

18.
FASEB J ; 19(2): 225-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15583035

RESUMO

In this report, we describe the identification of a polypeptide survival-promoting factor that is produced by maternal and early postnatal peripheral blood mononuclear cells (PBMCs) of the immune system in Long-Evans rats and humans. The factor, termed Y-P30, most likely arises from proteolytic processing of a larger precursor protein and accumulates mainly in pyramidal neurons of the developing cortex and hippocampus but not in astrocytes. It was released from neurons grown in culture and substantially promotes survival of cells in explant monocultures of perinatal thalamus from the offspring. Y-P30 mRNA was not detectable in infant or adult brain and was present only in blood cells of pregnant rats and humans but not in nonpregnant controls. However, Y-P30 transcription could be induced in PBMCs of adult animals by a central nervous system lesion (i.e., optic nerve crush), which points to a potential role of the factor not only in neuronal development but also in neuroinflammation after white matter injury.


Assuntos
Sobrevivência Celular/fisiologia , Meios de Cultivo Condicionados/química , Peptídeos/sangue , Peptídeos/fisiologia , Sobrevida , Tálamo/embriologia , Animais , Animais Recém-Nascidos , Anticorpos/metabolismo , Sobrevivência Celular/genética , Células Cultivadas , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Córtex Cerebelar/citologia , Córtex Cerebelar/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Embrião de Mamíferos/citologia , Humanos , Imunidade Materno-Adquirida/fisiologia , Leucócitos Mononucleares/metabolismo , Masculino , Dados de Sequência Molecular , Neurônios/química , Neurônios/metabolismo , Neuropeptídeos/biossíntese , Neuropeptídeos/sangue , Neuropeptídeos/imunologia , Neuropeptídeos/fisiologia , Técnicas de Cultura de Órgãos , Peptídeos/imunologia , Transporte Proteico/fisiologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Proteínas Recombinantes , Núcleos Talâmicos/química , Núcleos Talâmicos/citologia , Tálamo/química , Tálamo/citologia , Transcrição Gênica/fisiologia
19.
Front Neuroanat ; 10: 87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27721744

RESUMO

The choroid plexuses (ChP) are highly vascularized tissues suspended from each of the cerebral ventricles. Their main function is to secret cerebrospinal fluid (CSF) that fills the ventricles and the subarachnoid spaces, forming a crucial system for the development and maintenance of the CNS. However, despite the essential role of the ChP-CSF system to regulate the CNS in a global manner, it still remains one of the most understudied areas in neurobiology. Here we define by immunohistochemistry the expression of different proteins involved in the maturation and functionality of the ChP from the late embryological period to maturity. We found an opposite gradient of expression between aquaporin 1 (AQP1) and glucose transporter 1 (Glut 1) that define functional maturation in the ChP periphery, and proliferating cell nuclear antigen (PCNA) and calbindin (CB), present in the ChP root zone with proliferative activity. We conclude that the maturation of the ChP matures from distal to proximal, starting in the areas nearest to the cortex, expressing in the distal, mature areas AQP1 and Glut1 (related to ChP functionality to support cortex development), and in the proximal immature areas (ChP root) CB and PCNA related to progenitor activity and proliferation.

20.
J Neurosci ; 22(12): 4973-86, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12077194

RESUMO

Cajal-Retzius (CR) cells of the developing neocortex secrete Reelin (Reln), a glycoprotein involved in neuronal migration. CR cells selectively express p73, a p53 family member implicated in cell survival and apoptosis. Immunocytochemistry in prenatal human telencephalon reveals a complex sequence of migration waves of p73- and Reln-immunoreactive (IR) neurons into the cortical marginal zone (MZ). At early preplate stages, p73/Reln-IR cells arise in distinct sectors of the telencephalon, including cortical primordium and ganglionic eminences. After the appearance of the cortical plate, further p73/Reln-IR cells originate in the medial periolfactory forebrain. In addition, p73 marks a novel cell population that appears at the choroid-cortical junction or cortical hem before the emergence of the dorsal hippocampus. A pronounced mediolateral gradient in the density of p73/Reln-IR neurons in the neocortical MZ at 8 gestational weeks suggests that a subset of CR cells migrate tangentially from cortical hem and taenia tecta into neocortical territory. This hypothesis is supported by the absence of p73-transcripts in prospective neocortex of p73-/-mice at embryonic day 12 (E12), whereas they are present in cortical hem and taenia tecta. In the p73-/- preplate, Reln is faintly expressed in a calretinin-positive cell population, not present in this form in the E12 wild-type cortex. At P2, Reln-IR CR cells are undetectable in the p73-/- cortex, whereas Reln-expression in interneurons is unchanged. Our results point to a close association between p73 and Reln in CR cells of the developing neocortex, with a partial dissociation in early preplate and basal telencephalon, and to a p73-mediated role of the cortical hem in neocortical development.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neocórtex/embriologia , Neocórtex/metabolismo , Proteínas Nucleares/metabolismo , Animais , Calbindina 2 , Moléculas de Adesão Celular Neuronais/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Epitélio/embriologia , Epitélio/metabolismo , Proteínas da Matriz Extracelular/imunologia , Expressão Gênica , Genes Supressores de Tumor , Humanos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/citologia , Proteínas do Tecido Nervoso , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Prosencéfalo/citologia , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , RNA Mensageiro/biossíntese , Proteína Reelina , Proteína G de Ligação ao Cálcio S100/metabolismo , Serina Endopeptidases , Telencéfalo/citologia , Telencéfalo/embriologia , Telencéfalo/metabolismo , Transcrição Gênica , Proteína Tumoral p73 , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA