Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 33(4): e2839, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36912726

RESUMO

Long-distance dispersal is a key factor explaining the success of invasive alien species, particularly across oceanic islands. However, it is often not feasible to reliably measure long-distance seed dispersal (LDD) over many kilometers in the field. Here, we used a three-dimensional kinematic trajectory model (Computing Atmospheric Trajectory tool [CAT]) initiated on the basis of regional wind field data to assess the potential for LDD of a wind-dispersed invasive tree, Spathodea campanulata (African tulip tree), across the Society Islands (French Polynesia, South Pacific Ocean) following its initial planting and spread on the island of Tahiti. The main objective of our study was to determine whether S. campanulata could be expected to spread naturally among islands. Atmospheric dynamics, seed terminal velocity, precipitation, and temperature of air masses were considered to assess the potential for LDD between oceanic islands, with the island of Tahiti serving as the island source for multiple, geographically distant invasions. Aerial trajectories of modeled S. campanulata seeds indicated that wind-dispersed seeds originating from trees on the island of Tahiti could reach most of the Society Islands and disperse as far as 1364 km. This result suggests that Spathodea can be expected to spread naturally among the Society Islands. When rainfall events were modeled as causal agents of seed settlement, fewer seeds reached distant islands, but more seeds settled on the closest island (20 km away). Including effects of island topography ("barrier effects") also resulted in more seeds settling on the closest island and fewer seeds reaching the most distant islands. Overall, our findings suggest that recent atmospheric models can provide valuable insights into LDD and invasion patterns of wind-dispersed invasive species.


Assuntos
Dispersão de Sementes , Árvores , Sementes , Espécies Introduzidas , Oceanos e Mares , Ilhas
2.
Proc Natl Acad Sci U S A ; 116(18): 8824-8833, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30962379

RESUMO

Polynesians introduced the tropical crop taro (Colocasia esculenta) to temperate New Zealand after 1280 CE, but evidence for its cultivation is limited. This contrasts with the abundant evidence for big game hunting, raising longstanding questions of the initial economic and ecological importance of crop production. Here we compare fossil data from wetland sedimentary deposits indicative of taro and leaf vegetable (including Sonchus and Rorippa spp.) cultivation from Ahuahu, a northern New Zealand offshore island, with Raivavae and Rapa, both subtropical islands in French Polynesia. Preservation of taro pollen on all islands between 1300 CE and 1550 CE indicates perennial cultivation over multiple growing seasons, as plants rarely flower when frequently harvested. The pollen cooccurs with previously undetected fossil remains of extinct trees, as well as many weeds and commensal invertebrates common to tropical Polynesian gardens. Sedimentary charcoal and charred plant remains show that fire use rapidly reduced forest cover, particularly on Ahuahu. Fires were less frequent by 1500 CE on all islands as forest cover diminished, and short-lived plants increased, indicating higher-intensity production. The northern offshore islands of New Zealand were likely preferred sites for early gardens where taro production was briefly attempted, before being supplanted by sweet potato (Ipomoea batatas), a more temperate climate-adapted crop, which was later established in large-scale cultivation systems on the mainland after 1500 CE.


Assuntos
Agricultura/história , Clima , Produtos Agrícolas , Florestas , Fósseis , História Antiga , Humanos , Paleontologia , Polinésia
5.
Microorganisms ; 11(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37110253

RESUMO

Miconia calvescens is a dominant invasive alien tree species that threatens several endemic plants in French Polynesia (South Pacific). While most analyses have been performed at the scale of plant communities, the effects on the rhizosphere have not been described so far. However, this compartment can be involved in plant fitness through inhibitory activities, nutritive exchanges, and communication with other organisms. In particular, it was not known whether M. calvescens forms specific associations with soil organisms or has a specific chemical composition of secondary metabolites. To tackle these issues, the rhizosphere of six plant species was sampled on the tropical island of Mo'orea in French Polynesia at both the seedling and tree stages. The diversity of soil organisms (bacteria, microeukaryotes, and metazoa) and of secondary metabolites was studied using high-throughput technologies (metabarcoding and metabolomics, respectively). We found that trees had higher effects on soil diversity than seedlings. Moreover, M. calvescens showed a specific association with microeukaryotes of the Cryptomycota family at the tree stage. This family was positively correlated with the terpenoids found in the soil. Many terpenoids were also found within the roots of M. calvescens, suggesting that these molecules were probably produced by the plant and favored the presence of Cryptomycota. Both terpenoids and Cryptomycota were thus specific chemicals and biomarkers of M. calvescens. Additional studies must be performed in the future to better understand if they contribute to the success of this invasive tree.

6.
Plants (Basel) ; 12(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068626

RESUMO

Understanding the mechanisms of biological invasions (e.g., competitive exclusion) is a key conservation challenge, especially on islands. Many mechanisms have been tested by comparing the characteristics of native and alien species, but few studies have considered ecological strategies. Here we aim at comparing the competitive ability, stress tolerance, and ruderalism (CSR) of native and alien trees in the tropical rainforests of Réunion Island. A total of sixteen 100 m2 plots (eight 'near-trail' and eight 'off-trail', at less disturbed sites) were established over a 2100 m elevational gradient. Three traits were measured in 1093 leaves from 237 trees: leaf area, leaf dry matter content and specific leaf area. They were converted into a CSR score assigned to each of the 80 surveyed tree species (70 native and 10 alien) using the 'Stratefy' ordination approach. C scores increased with basal area and S scores with elevation, but R scores were not higher along the trail, thus only partially validating Stratefy. Native and alien trees had similar CS strategies, thus challenging invasion hypotheses predicting a difference in ecological strategies and rather demonstrating the importance of environmental filtering. However, other differences falling outside the CSR theory may also explain the success of alien species on Réunion.

7.
Glob Ecol Conserv ; 31: e01847, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34761079

RESUMO

Despite islands contributing only 6.7% of land surface area, they harbor ~20% of the Earth's biodiversity, but unfortunately also ~50% of the threatened species and 75% of the known extinctions since the European expansion around the globe. Due to their geological and geographic history and characteristics, islands act simultaneously as cradles of evolutionary diversity and museums of formerly widespread lineages-elements that permit islands to achieve an outstanding endemicity. Nevertheless, the majority of these endemic species are inherently vulnerable due to genetic and demographic factors linked with the way islands are colonized. Here, we stress the great variation of islands in their physical geography (area, isolation, altitude, latitude) and history (age, human colonization, human density). We provide examples of some of the most species rich and iconic insular radiations. Next, we analyze the natural vulnerability of the insular biota, linked to genetic and demographic factors as a result of founder events as well as the typically small population sizes of many island species. We note that, whereas evolution toward island syndromes (including size shifts, derived insular woodiness, altered dispersal ability, loss of defense traits, reduction in clutch size) might have improved the ability of species to thrive under natural conditions on islands, it has simultaneously made island biota disproportionately vulnerable to anthropogenic pressures such as habitat loss, overexploitation, invasive species, and climate change. This has led to the documented extinction of at least 800 insular species in the past 500 years, in addition to the many that had already gone extinct following the arrival of first human colonists on islands in prehistoric times. Finally, we summarize current scientific knowledge on the ongoing biodiversity loss on islands worldwide and express our serious concern that the current trajectory will continue to decimate the unique and irreplaceable natural heritage of the world's islands. We conclude that drastic actions are urgently needed to bend the curve of the alarming rates of island biodiversity loss.

8.
BMC Evol Biol ; 9: 204, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19686604

RESUMO

BACKGROUND: The mass extirpation of the island of Moorea's endemic partulid tree snail fauna, following the deliberate introduction of the alien predator Euglandina rosea, represents one of the highest profile conservation crises of the past thirty years. All of the island's partulids were thought to be extirpated by 1987, with five species persisting in zoos, but intensive field surveys have recently detected a number of surviving wild populations. We report here a mitochondrial (mt) phylogenetic estimate of Moorean partulid wild and captive lineage survival calibrated with a reference museum collection that pre-dates the predator's introduction and that also includes a parallel dataset from the neighboring island of Tahiti. RESULTS: Although severe winnowing of Moorea's mt lineage diversity has occurred, seven of eight (six Partula; two Samoana) partulid tip clades remain extant. The extinct mt clade occurred predominantly in the P. suturalis species complex and it represented a major component of Moorea's endemic partulid treespace. Extant Moorean mt clades exhibited a complex spectrum of persistence on Moorea, in captivity, and (in the form of five phylogenetically distinct sister lineages) on Tahiti. Most notably, three Partula taxa, bearing two multi-island mt lineages, have survived decades of E. rosea predation on Moorea (P. taeniata) and in the valleys of Tahiti (P. hyalina and P. clara). Their differential persistence was correlated with intrinsic attributes, such as taxonomy and mt lineages, rather than with their respective within-island distribution patterns. CONCLUSION: Conservation efforts directed toward Moorean and Tahitian partulids have typically operated within a single island frame of reference, but our discovery of robust genealogical ties among survivors on both islands implies that a multi-island perspective is required. Understanding what genetic and/or ecological factors have enabled Partula taeniata, P. hyalina and P. clara to differentially survive long-term direct exposure to the predator may provide important clues toward developing a viable long term conservation plan for Society Island partulid tree snails.


Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Filogenia , Caramujos/genética , Animais , DNA Mitocondrial/genética , Variação Genética , Geografia , Polinésia , Análise de Sequência de DNA , Caramujos/classificação
9.
ISME J ; 12(9): 2211-2224, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29884829

RESUMO

Island biogeography theory is one of the most influential paradigms in ecology. That island characteristics, including remoteness, can profoundly modulate biological diversity has been borne out by studies of animals and plants. By contrast, the processes influencing microbial diversity in island systems remain largely undetermined. We sequenced arbuscular mycorrhizal (AM) fungal DNA from plant roots collected on 13 islands worldwide and compared AM fungal diversity on islands with existing data from mainland sites. AM fungal communities on islands (even those >6000 km from the closest mainland) comprised few endemic taxa and were as diverse as mainland communities. Thus, in contrast to patterns recorded among macro-organisms, efficient dispersal appears to outweigh the effects of taxogenesis and extinction in regulating AM fungal diversity on islands. Nonetheless, AM fungal communities on more distant islands comprised a higher proportion of previously cultured and large-spored taxa, indicating that dispersal may be human-mediated or require tolerance of significant environmental stress, such as exposure to sunlight or high salinity. The processes driving large-scale patterns of microbial diversity are a key consideration for attempts to conserve and restore functioning ecosystems in this era of rapid global change.


Assuntos
Micobioma , Micorrizas/classificação , Animais , Biodiversidade , DNA Fúngico/química , Humanos , Ilhas , Características de História de Vida , Micorrizas/genética , Micorrizas/isolamento & purificação , Filogeografia , Análise de Sequência de DNA
10.
PeerJ ; 3: e1037, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26131377

RESUMO

The land planarian Platydemus manokwari de Beauchamp, 1963 or "New Guinea flatworm" is a highly invasive species, mainly in the Pacific area, and recently in Europe (France). We report specimens from six additional countries and territories: New Caledonia (including mainland and two of the Loyalty Islands, Lifou and Maré), Wallis and Futuna Islands, Singapore, Solomon Islands, Puerto Rico, and Florida, USA. We analysed the COI gene (barcoding) in these specimens with two sets of primers and obtained 909 bp long sequences. In addition, specimens collected in Townsville (Australia) were also sequenced. Two haplotypes of the COI sequence, differing by 3.7%, were detected: the "World haplotype" found in France, New Caledonia, French Polynesia, Singapore, Florida and Puerto Rico; and the "Australian haplotype" found in Australia. The only locality with both haplotypes was in the Solomon Islands. The country of origin of Platydemus manokwari is New Guinea, and Australia and the Solomon Islands are the countries closest to New Guinea from which we had specimens. These results suggest that two haplotypes exist in the area of origin of the species, but that only one of the two haplotypes (the "World haplotype") has, through human agency, been widely dispersed. However, since P. manokwari is now recorded from 22 countries in the world and we have genetic information from only 8 of these, with none from New Guinea, this analysis provides only partial knowledge of the genetic structure of the invasive species. Morphological analysis of specimens from both haplotypes has shown some differences in ratio of the genital structures but did not allow us to interpret the haplotypes as different species. The new reports from Florida and Puerto Rico are firsts for the USA, for the American continent, and the Caribbean. P. manokwari is a known threat for endemic terrestrial molluscs and its presence is a matter of concern. While most of the infected territories reported until now were islands, the newly reported presence of the species in mainland US in Florida should be considered a potential major threat to the whole US and even the Americas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA