Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 61(3): 641-657, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29185012

RESUMO

AIMS/HYPOTHESIS: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.org ) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP). METHODS: Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells. RESULTS: Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes. CONCLUSIONS/INTERPRETATION: These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.


Assuntos
Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 2/metabolismo , Biologia de Sistemas/métodos , Doadores de Tecidos , Transcriptoma/genética , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional , Feminino , Humanos , Masculino , Pancreatectomia
2.
J Neuropathol Exp Neurol ; 61(10): 896-902, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12387455

RESUMO

Children with neurofibromatosis type I (NF1) have a highly increased risk for developing optic nerve gliomas. Several lines of evidence support the notion that the NF1 gene functions as tumor suppressor in these pilocytic astrocytomas and therefore it is tempting to hypothesize that the NF1 gene plays a similar role in sporadic pilocytic astrocytomas. We searched for possible mechanisms of inactivation of the NF1 gene in pilocytic astrocytomas of different locations. Protein truncation testing (PTT) did not render indication for inactivating mutations in 10 analyzed tumors. Further, loss of heterozygosity analysis revealed maintenance of heterozygosity for 3 intragenic markers in 11 informative cases. Using a real-time PCR-based assay we showed that total NF1 transcript levels are high in pilocytic astrocytomas and that the NF1 type I and type II expression ratios in pilocytic astrocytomas are comparable to ratios in normal brain tissue and high-grade gliomas. Consequently, the data presented here argue against altered NF1 gene expression and the involvement of the NF1 gene in the tumorigenesis of sporadic pilocytic astrocytomas.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Genes da Neurofibromatose 1 , Genes Supressores de Tumor , Perda de Heterozigosidade , Mutação , Adolescente , Adulto , Astrocitoma/metabolismo , Astrocitoma/patologia , Astrocitoma/cirurgia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Criança , Humanos , Neurofibromina 1/genética , Neurofibromina 1/isolamento & purificação , Plasmídeos , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese
3.
J Neuropathol Exp Neurol ; 61(4): 321-8, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11939587

RESUMO

The recognition of molecular subsets among glioblastomas has raised the question whether distinct mutations in glioblastoma-associated genes may serve as prognostic markers. The present study on glioblastomas (GBM) from 97 consecutively sampled adult patients is based on a clinical, histopathological, immunohistochemical, and molecular genetic analysis. Parameters assessed were age at diagnosis, survival, cell type, proliferation, necrosis, microvascular proliferation, sarcomatous growth, lymphocytic infiltration, thromboses, calcifications, GFAP expression, MIB-1 index, loss of heterozygosity (LOH) of the chromosomal arms 1p, 10p, 10q, 17p, 19q and structural alterations in the TP53, EGFR and PTEN genes. As in previous studies, younger age was significantly associated with better survival. Among the molecular parameters, TP53 mutations and LOH10q emerged as favorable and poor prognostic factors, respectively. TP53 mutations were a favorable prognostic factor independent of whether glioblastomas were primary or secondary. LOH1p or 19q, lesions suspected to be over-represented in long term survivors with malignant glioma, were not associated with better survival. However, the combination of LOH1p and LOH19q defined GBM patients with a significantly better survival. Notably, these patients did not exhibit morphological features reminiscent of oligodendroglioma. These findings indicate that genotyping of glioblastoma may provide clinical information of prognostic importance.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatologia , Feminino , Genótipo , Glioblastoma/diagnóstico , Glioblastoma/fisiopatologia , Humanos , Perda de Heterozigosidade , Masculino , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida
4.
J Neuropathol Exp Neurol ; 62(11): 1192-201, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14656076

RESUMO

The HIC-1 (hypermethylated in cancer) candidate tumor suppressor gene is located on chromosome 17p13.3, a region frequently deleted in medulloblastomas (MBs). MBs arising in the cerebellum represent the most common malignant brain tumors in children. In this study we have analyzed the sequence, methylation, and expression status of the HIC-1 gene in MBs. Hypermethylation of the 5'UTR and/or second exon of HIC-1 was detected in 33/39 (85%) of MB biopsies and in 7/8 (88%) of MB cell lines by methylation-specific PCR. There was a significant correlation (p < 0.001) between HIC-1 methylation and lack of transcription as determined by competitive RT-PCR. Treatment of the MB cell lines Daoy and MEB-MED-8A with 5-aza-2'deoxycytidine led to re-expression of HIC-1 transcripts, indicating a silencing of HIC-1 by CpG island methylation. Mutation analysis of the coding region of HIC-1 revealed a single deletion leading to an in-frame deletion of 4 amino acids in the second exon of HIC-1 (1/68, 1.5%). Our data indicate that a significant number of MBs exhibit strikingly reduced HIC-1 expression caused by altered CpG island methylation. These data suggest that epigenetic silencing of HIC-1 may well contribute to the pathogenesis in the majority of MBs.


Assuntos
Azacitidina/análogos & derivados , Neoplasias Cerebelares/genética , Epigênese Genética , Inativação Gênica , Meduloblastoma/genética , Fatores de Regulação Miogênica/genética , Adolescente , Adulto , Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/uso terapêutico , Northern Blotting , Neoplasias Cerebelares/tratamento farmacológico , Criança , Pré-Escolar , Cistina/genética , Decitabina , Feminino , Regulação Neoplásica da Expressão Gênica , Glicina/genética , Humanos , Lactente , Perda de Heterozigosidade , Masculino , Meduloblastoma/dietoterapia , Metilação , Pessoa de Meia-Idade , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , Polimorfismo Conformacional de Fita Simples , RNA Mensageiro/metabolismo , Sulfitos/farmacologia , Células Tumorais Cultivadas
5.
Acta Neuropathol ; 105(4): 328-32, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12624785

RESUMO

Malignant transformation of human gliomas is accompanied by extensive proliferation of stromal blood vessels. Recent data suggest mesenchymal transdifferentiation of neoplastic cells in various human cancers, including colon and breast cancer as well as gliosarcoma. In this study, we have analyzed proliferating stromal blood vessels in glioblastoma multiforme for the presence of mutations in the tumor suppressor gene TP53. Using tissue arrays derived from glioblastoma specimens, cases with significant immunohistochemical p53 accumulation were selected for molecular genetic detection of TP53 mutations in exons 5 to 8. None of the tumors included in this series displayed properties of gliosarcoma. Proliferating glomeruloid stromal vessels were isolated by laser microdissection from paraffin sections. In six cases, single-strand conformation polymorphism analysis for mutations of the TP53 gene in stromal blood vessels compared with adjacent tumor cells and subsequent DNA sequencing of the resulting DNA fragments were carried out. Glioblastoma cells of these cases exhibited TP53 mutations in exons 5, 7 and 8. None of these tumors showed TP53 mutations in microdissected samples from glomeruloid vessels. The absence of TP53 mutations in vascular stromal components of glioblastoma multiforme supports the hypothesis that microvascular proliferations originate from the tumor stroma and are not derived from transdifferentiated glioblastoma cells.


Assuntos
Genes p53/genética , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Diferenciação Celular , Análise Mutacional de DNA , DNA de Neoplasias/análise , Dissecação , Humanos , Imuno-Histoquímica , Lasers , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Células Estromais/patologia
6.
Cancer Genomics Proteomics ; 1(3): 209-214, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-31394655

RESUMO

Hypermethylation of CpG island is an epigenetic event prevalent in human gliomas. Here we employed a high-throughput microarray approach for a global search of DNA methylation to identify novel epigenetic loci in specific glioma subtypes. Hierarchical clustering analysis separated 20 glioma samples according to their WHO histopathological subtypes - pilocytic astrocytomas (PAs, grade I), oligoastrocytomas (OAs, grade II) and glioblastomas (GBMs, grade IV), based on their unique methylation patterns. The overall methylation frequency of the low-grade PAs was significantly less than that of the more aggressive OAs and GBMs (0.45% versus 2.0% and 1.4%; PAs versus OAs, p<0.01; PAs versus GBMs, p<0.01). The lower level of DNA methylation observed in PAs may be in part due to the increased methylation of multiple CpG islands which occur in more advanced tumors. However, the young age of onset of PAs may also contribute to this observed difference. Although there were many hypermethylated loci exclusive to the OA and GBM subtypes, the methylation frequencies between these groups were not significantly different. Analysis by methylation-specific PCR on an expanded set of samples and on more glioma subtypes further confirmed an epigenetic marker, SMARCA5, the hypermethylation of which was preferentially observed in grade IV, but not in grades I or II gliomas (p<0.0001). The intermediate grade III gliomas showed low levels of SMARCA5 hypermethylation. Epigenetic loci uncovered in the present study recapitulate the histopathological differences of these gliomas, indicating that these molecular changes may be responsible for the development of the different glioma subtypes. On-going work in our laboratory has shown that some of these loci are indeed hypermethylated in the early stages of astrocytic tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA