Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 61(32): 12822-12827, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35925759

RESUMO

Bi0.5Pb0.5FeO3 with 1:1 mixture of Bi and Pb having charge degrees of freedom at the A-site of perovskite oxide ABO3 is obtained for the first time by high-pressure synthesis. Comprehensive synchrotron X-ray powder diffraction, optical second harmonic generation, Mössbauer spectroscopy, and hard X-ray photoemission spectroscopy measurements revealed that Bi0.5Pb0.5FeO3 is a canted antiferromagnetic insulator crystalizing in a nonpolar tetragonal I4/mcm structure with √2a × âˆš2a × 2a unit cell and has unusually Pb charge disproportionated Bi3+0.5Pb2+0.25Pb4+0.25Fe3+O3 charge distribution. The valence of transition metal M in Bi0.5Pb0.5MO3 changes from 3.5+ to 3+ and finally to 2+ from Mn to Fe and to Ni, from left to right in the periodic table as the 3d-level becomes deeper. The valences of Bi and Pb increase to compensate for the decrease in the M's valence, and Pb changes from 6s2 (2+) to 6s0 (4+) before Bi changes.

2.
Inorg Chem ; 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657337

RESUMO

We report room-temperature (RT) magnetoresistance (MR) in a novel Fe-based perovskite, SrV0.3Fe0.7O2.8. This compound contains ordered oxygen vacancies in every fifth primitive perovskite (111)p plane, leading to a layered structure consisting of triple-octahedral and double-tetrahedral layers. Along with the oxygen vacancies, the transition-metal ions are also ordered: the octahedral sites are occupied by 100% of Fe ions, while the tetrahedral sites are occupied by 25% of Fe ions and 75% of V ions. As a result, SrV0.3Fe0.7O2.8 forms a magnetically striped lattice in which the octahedral layers with 100% of magnetic Fe ions are separated by the diluted magnetic layer. The compound exhibits weak ferromagnetism and shows a large negative MR (-5% at 3 T) at RT, despite the small saturation moment (0.4 µB/Fe atom). Thus, this type of layered compound is promising for further large MR by an increase of magnetization through chemical substitution.

3.
Inorg Chem ; 60(11): 8035-8041, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34037389

RESUMO

Diodes, memories, logic circuits, and most other current information technologies rely on the combined use of p- and n-type semiconductors. Although oxide semiconductors have many technologically attractive functionalities, such as transparency and high dopability to enable their use as conducting films, they typically lack bipolar conductivity. In particular, the absence of p-type semiconducting properties owing to the innate electronic structures of oxides represents a bottleneck for the development of practical devices. Here, bipolar semiconducting properties are demonstrated in α-SnWO4 within a 100 °C temperature window after appropriate thermal treatment. Comprehensive spectroscopic observations reveal that Sn4+ is present in p-type α-SnWO4 in a notably greater quantity than in n-type. This result strongly suggests that the Sn4+ substitutional defects on the W6+ sites contribute to hole-carrier generation in α-SnWO4. We also find that oxygen vacancies are initially formed in Sn-O-W bonds and migrate to W-O-W bonds with changes in semiconducting properties from p-type to n-type. These findings suggest useful strategies for exploring p-type oxide semiconductors and controlling their carrier type by utilizing the octahedral structure.

4.
Inorg Chem ; 59(14): 9866-9880, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32589413

RESUMO

Multistep spin crossover (SCO) compounds have attracted much attention, since they can be great candidates for high-density multinary memory devices. The introduction of substituents, such as methyl (Me), chloro (Cl), bromo (Br), and methoxy (MeO) groups, at para positions to the phenyl-substituted tripodal N6 ligand-coordinated SCO FeII material, [FeLPh](NTf2)2 [where LPh = tris(2-{[(1-phenyl-1H-1,2,3-triazol-4-yl)methylidene]amino}ethyl)amine and NTf2 = bis(trifluoromethanesulfonyl)imide], affords a new family of solvent-free FeII complexes: [FeL4-R-Ph](NTf2)2 {where L4-R-Ph = tris[2-({[1-(4-R-phenyl)-1H-1,2,3-triazol-4-yl]methylidene}amino)ethyl]amine, where R = Me (1), Cl (2), Br (3), and MeO (4)}. 1 shows temperature invariant high-spin (HS) state, whereas the others show spin transitions with different characteristics, such as half-SCO (4), two-step SCO (3), and unusual three-step SCO with hysteresis (2). Mössbauer and X-ray absorption fine structure (XAFS) spectroscopic studies of them support the magnetic susceptibilities results. Density functional theory calculations indicate that the electronic effect of different substituents on magnetic properties is negligible in this FeII family. Single-crystal X-ray diffraction studies reveal that 1-4 has a similar packing arrangement with three-dimensional supramolecular network via intermolecular π-π and CH···π interactions between complex cations, and CH···X (X = O, N, and F) hydrogen bonding interactions between cations and inherently frustrated NTf2 anions. Variable-temperature structural studies unveil a variety of stepped SCO behaviors of 2-4 and deactivation of SCO in 1 are governed by the regulation of ordering of NTf2 counteranions through the subtle modification of terminal substituents of complex cations. Quantitative light-induced excited spin-state trapping (LIESST) effect was observed for 2-4 via green light irradiation (532 nm) at 10 K. This study opens up a new way for systematic control of magnetic response from no SCO to half-, two-step, and finally three-step SCO with hysteresis by precise tuning of the ordering of flexible NTf2 anions included in the supramolecular network with potentially SCO-active complex cations.

5.
Nano Lett ; 19(3): 1767-1773, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30668124

RESUMO

Using the electric field to manipulate the magnetization of materials is a potential way of making low-power-consumption nonvolatile magnetic memory devices. Despite concentrated effort in the last 15 years on magnetic multilayers and magnetoelectric multiferroic thin films, there has been no report on the reversal of out-of-plane magnetization by an electric field at room temperature without the aid of an electric current. Here, we report direct observation of out-of-plane magnetization reversal at room temperature by magnetic force microscopy after electric polarization switching of cobalt-substituted bismuth ferrite thin film grown on (110)o-oriented GdScO3 substrate. A striped pattern of ferroelectric and weakly ferromagnetic domains was preserved after reversal of the out-of-plane electric polarization.

6.
J Am Chem Soc ; 140(46): 15690-15700, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30347981

RESUMO

Hybrid improper ferroelectricity, which utilizes nonpolar but ubiquitous rotational/tilting distortions to create polarization, offers an attractive route to the discovery of new ferroelectric and multiferroic materials because its activity derives from geometric rather than electronic origins. Design approaches blending group theory and first principles can be utilized to explore the crystal symmetries of ferroelectric ground states, but in general, they do not make accurate predictions for some important parameters of ferroelectrics, such as Curie temperature ( TC). Here, we establish a predictive and quantitative relationship between TC and the Goldschmidt tolerance factor, t, by employing n = 2 Ruddlesden-Popper (RP) A3B2O7 as a prototypical example of hybrid improper ferroelectrics. The focus is placed on an RP system, (Sr1- xCa x)3Sn2O7 ( x = 0, 0.1, and 0.2), which allows for the investigation of the purely geometric (ionic size) effect on ferroelectric transitions, due to the absence of the second-order Jahn-Teller active (d0 and 6s2) cations that often lead to ferroelectric distortions through electronic mechanisms. We observe a ferroelectric-to-paraelectric transition with TC = 410 K for Sr3Sn2O7. We also find that the TC increases linearly up to 800 K upon increasing the Ca2+ content, i.e., upon decreasing the value of t. Remarkably, this linear relationship is applicable to the suite of all known A3B2O7 hybrid improper ferroelectrics, indicating that the  TC correlates with the simple crystal chemistry descriptor, t, based on the ionic size mismatch. This study provides a predictive guideline for estimating the TC of a given material, which would complement the convergent group-theoretical and first-principles design approach.

7.
J Synchrotron Radiat ; 22(2): 427-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25723944

RESUMO

Energy-domain (57)Fe polarization-dependent synchrotron radiation Mössbauer spectroscopy was developed by using a diamond X-ray phase plate and an iron borate nuclear Bragg monochromator. The former controls the polarization of the incident synchrotron radiation X-rays and the latter filters the (57)Fe-Mössbauer radiation with a narrow bandwidth of ∼3.4 Γ0 (Γ0 ≃ 4.7 neV: natural linewidth of the (57)Fe nucleus) from the broadband synchrotron radiation. The developed nuclear diffraction optics allowed (57)Fe-Mössbauer studies to be performed with various polarization states, i.e. linear polarization, circular polarization and non-polarization. In this paper, the spectrometer system, beam characterization, performance-test experiments and a grazing-incidence Mössbauer measurement of an isotope-enriched ((57)Fe: 95%) iron thin film are described.

8.
J Nanosci Nanotechnol ; 14(3): 2190-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24745211

RESUMO

Bi(1-x)Gd(x)FeO3 (0 < or = x < or = 1.0) nanoparticles were synthesized by a wet chemical method. The annealing temperatures were controlled to obtain single-phase Bi(1-x)Gd(x)FeO3 nanoparticles. The crystal diameters decreased as the number of doped Gd ions increased. The crystal structure changed, as the number of Gd ions increased, from rhombohedral to orthorhombic perovskite, at x = 0.2. The behavior of the magnetization curves observed at various values of x (x = 0.05, 0.1, 0.15) of the rhombohedral structure suggested that the canted antiferromagnetism and remanent magnetization (M(r)) drastically increased, compared with those at x = 0 (BiFeO3). It is suggested that the spin-canting angle of the Fe ions increased with the increase in the number of Gd ions. The dielectric properties at x = 0.1 showed that the dielectric loss (tan delta) was improved, compared with that at x = 0 (BiFeO3), by approximately 90%, while the real part of the dielectric constant epsilon' was reduced by approximately 15%. The reason is that the doping impurities restrained the reduction in the leakage current. It was found, from the X-ray absorption fine structure (XAFS) spectra, that Gd ions were doped accurately and that the symmetry of the B site was improved. The Mössbauer analysis suggested the existence of magnetic cycloid spiral ordering.

9.
J Synchrotron Radiat ; 19(Pt 2): 198-204, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22338679

RESUMO

Energy-domain grazing-incidence (57)Fe-Mössbauer spectroscopy (E-GIMS) with synchrotron radiation (SR) has been developed to study surface and interface structures of thin films. Highly brilliant (57)Fe-Mössbauer radiation, filtered from SR by a (57)FeBO(3) single-crystal nuclear Bragg monochromator, allows conventional Mössbauer spectroscopy to be performed for dilute (57)Fe in a mirror-like film in any bunch-mode operation of SR. A theoretical and experimental study of the specular reflections from isotope-enriched ((57)Fe: 95%) and natural-abundance ((57)Fe: ∼2%) iron thin films has been carried out to clarify the basic features of the coherent interference between electronic and nuclear resonant scattering of (57)Fe-Mössbauer radiation in thin films. Moreover, a new surface- and interface-sensitive method has been developed by the combination of SR-based E-GIMS and the (57)Fe-probe layer technique, which enables us to probe interfacial complex magnetic structures in thin films with atomic-scale depth resolution.

10.
Nat Commun ; 12(1): 1917, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772004

RESUMO

PbMO3 (M = 3d transition metals) family shows systematic variations in charge distribution and intriguing physical properties due to its delicate energy balance between Pb 6s and transition metal 3d orbitals. However, the detailed structure and physical properties of PbFeO3 remain unclear. Herein, we reveal that PbFeO3 crystallizes into an unusual 2ap × 6ap × 2ap orthorhombic perovskite super unit cell with space group Cmcm. The distinctive crystal construction and valence distribution of Pb2+0.5Pb4+0.5FeO3 lead to a long range charge ordering of the -A-B-B- type of the layers with two different oxidation states of Pb (Pb2+ and Pb4+) in them. A weak ferromagnetic transition with canted antiferromagnetic spins along the a-axis is found to occur at 600 K. In addition, decreasing the temperature causes a spin reorientation transition towards a collinear antiferromagnetic structure with spin moments along the b-axis near 418 K. Our theoretical investigations reveal that the peculiar charge ordering of Pb generates two Fe3+ magnetic sublattices with competing anisotropic energies, giving rise to the spin reorientation at such a high critical temperature.

11.
Anal Chem ; 80(24): 9666-71, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19072270

RESUMO

The effects of anions (P(V), P(III), P(I), Se(IV), OH(-), F(-), Cl(-), SCN(-), S(IV), and CH(3)COO(-)) on the adsorption of trivalent metal ions (Fe(3+), Al(3+), Ga(3+), In(3+), and Sc(3+)) to three strongly acidic cation-exchange resins (-S)(-) of different types (porous or gel) and different exchange capacities (4.55, 3.91, and 0.96 mmol g(-1)) were studied systematically. All these metal ions showed coadsorption of OH(-), irrespective of the resins. In contrast, coadsorption of P(V), P(III), P(I), and Se(IV) was observed on the resins of the higher exchange capacities but not on the resin of the lowest exchange capacity. Stoichiometric analyses and spectroscopic (Mossbauer and infrared) studies for Fe(3+) demonstrated the presence of the coadsorbed species: [(-S)(2)Fe(OH)] and [(-S)(2)(Fe-O-Fe)(S-)(2)] for OH(-), [(-S)(2)Fe(HPO(4))Fe(S-)(2)] for P(V), and [(-S)(2)FeX](j) (X(-) = H(2)PO(3)(-), H(2)PO(2)(-), HSeO(3)(-); j > 1) for P(III), P(I), and Se(IV). No coadsorption was observed for the other anions. These findings indicate that the bridge bonding of anions between the metal ions adsorbed on the resins of the higher exchange capacities plays a crucial role for the coadsorption. Some analytical implication was also discussed.

12.
Sci Rep ; 8(1): 415, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323244

RESUMO

X-ray absorption near edge structure (XANES) measurement is one of the most powerful tools for the evaluation of a cation valence state. XANES measurement is sometimes the only available technique for the evaluation of the valence state of a dopant cation, which often occurs in phosphor materials. The validity of the core excitation process should be examined as a basis for understanding the applicability of this technique. Here, we demonstrate the validity of valence estimation of tin in oxide glasses, using Sn K-edge and L-edge XANES spectra, and compare the results with 119Sn Mössbauer analysis. The results of Sn K-edge XANES spectra analysis reveal that this approach cannot evaluate the actual valence state. On the contrary, in LII-edge absorption whose transition is 2p1/2-d, the change of the white line corresponds to the change of the valence state of tin, which is calculated from the 119Sn Mössbauer spectra. Among several analytical approaches, valence evaluation using the peak area, such as the absorption edge energy E 0 at the fractions of the edge step or E 0 at the zero of the second derivative, is better. The observed findings suggest that the valence state of a heavy element in amorphous materials should be discussed using several different definitions with error bars, even though L-edge XANES analyses are used.

13.
Adv Sci (Weinh) ; 4(1): 1600246, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28105400

RESUMO

Daylight-driven photocatalysts have attracted much attention in the context of "green" technology. Although various active materials have been reported and their applications are rapidly increasing, many are discovered after enormous experimental efforts. Herein the discovery of a novel oxide photocatalyst, ß-SnMoO4, is demonstrated via a rational search of 3483 known and hypothetical compounds with various compositions and structures over the whole range of SnO-MO q/2 (M: Ti, Zr, and Hf (q = 4); V, Nb, and Ta (q = 5); Cr, Mo, and W (q = 6)) pseudobinary systems. Screening using thermodynamic stability, band gap, and band-edge positions by density functional theory calculations identifies ß-SnMoO4 as a potential target. Then a low temperature route is used to successfully synthesize the novel crystal, which is confirmed by X-ray powder diffraction and Mössbauer spectroscopy. ß-SnMoO4 is active for the photocatalytic decomposition of a methylene blue solution under daylight and its activity is comparable to a known photocatalyst, ß-SnWO4.

14.
Adv Mater ; 29(9)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28000301

RESUMO

The coexistence and coupling of ferromagnetic and ferroelectric orders in a single material is crucial for realizing next-generation multifunctional applications. The coexistence of such orders is confirmed at room temperature in epitaxial thin films of BiFe1-x Cox O3 (x ≤ 0.15), which manifests a spin structure change from a low-temperature cycloidal one to a high-temperature collinear one with canted ferromagnetism.

15.
Sci Rep ; 5: 7894, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25600001

RESUMO

Oxygen coordination of transition metals is a key for functional properties of transition-metal oxides, because hybridization of transition-metal d and oxygen p orbitals determines correlations between charges, spins and lattices. Strain often modifies the oxygen coordination environment and affects such correlations in the oxides, resulting in the emergence of unusual properties and, in some cases, fascinating behaviors. While these strain effects have been studied in many of the fully-oxygenated oxides, such as ABO3 perovskites, those in oxygen-deficient oxides consisting of various oxygen coordination environments like tetrahedra and pyramids as well as octahedra remain unexplored. Here we report on the discovery of a strain-induced significant increase, by 550 K, in the metal-insulator transition temperature of an oxygen-deficient Fe oxide epitaxial thin film. The observed transition at 620 K is ascribed to charge disproportionation of Fe(3.66+) into Fe(4+) and Fe(3+), associated with oxygen-vacancy ordering. The significant increase in the metal-insulator transition temperature, from 70 K in the bulk material, demonstrates that epitaxial growth of oxygen-deficient oxides under substrate-induced strain is a promising route for exploring novel functionality.

16.
Inorg Chem ; 46(4): 1297-304, 2007 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-17243761

RESUMO

Four heteronuclear complexes Mn(CuL)2(SCN)2 (1), {[Mn(CuL)2(mu-dca)2].2H2O}n (2), Zn(CuL)2(SCN)2 (3), and [Fe(CuL)(N3)2]2 (4) incorporating macrocyclic oxamide ligands have been synthesized and structurally characterized. L is the dianion of diethyl 5,6,7,8,15,16-hexahydro-6,7-dioxodibenzo[1,4,8,11]-tetraazacyclotetradecine-13,18-dicarboxylate, and dca is the dicyanamide. The structure of 1 or 3 consists of oxamido-bridged trinuclear [MIICuII2] molecules (for 1, M is the manganese(II) ion, and for 3, M is the zinc(II) ion). Both of them consist of 1D supramolecuar chains via pi-pi interactions. The structure of 2 also has the oxamido-bridged trinuclear [MnIICuII2] structure units and consists of 2D layers formed by the linkage of copper(II) and manganese(II) atoms via the oxamido and mu1, 5-dca bridges. Complex 4 consists of oxamido-bridged tetranuclear [FeII2CuII2] molecules and arranges in 1D chains. Different co-ligands may result in different structures in this macrocyclic oxamide system. The variable-temperature magnetic susceptibility measurements (2-300 K) of 1 and 2 both show the pronounced antiferromagnetic interactions between the copper(II) and manganese(II) ions.


Assuntos
Cobre/química , Ferro/química , Compostos Macrocíclicos/síntese química , Manganês/química , Compostos Organometálicos/síntese química , Ácido Oxâmico/análogos & derivados , Zinco/química , Cristalografia por Raios X , Ligantes , Magnetismo , Estrutura Molecular , Ácido Oxâmico/química , Espectrofotometria Infravermelho , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA