Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chembiochem ; 16(12): 1764-70, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26032177

RESUMO

The major bacterial triterpenoids of the hopane series each consist of a C30 triterpene hopane moiety and an additional nonterpene C5 side chain derived from D-ribose and linked through its C-5 carbon atom to the hopane side chain. Bacteriohopanetetrol and aminobacteriohopanetriol are the most common representatives of this natural product series, adenosylhopane and ribosylhopane being putative precursors. Deuterium-labelled ribosylhopane was obtained by hemisynthesis and converted into deuterium-labelled bacteriohopanetetrol in the presence of NADPH, thus giving evidence of this as yet unknown precursor-to-product relationship in the bacterial hopanoid metabolic pathway.


Assuntos
Methylobacterium/química , Triterpenos/química , Sistema Livre de Células , Estrutura Molecular
2.
Environ Microbiol ; 15(8): 2384-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23530864

RESUMO

Anaerobic methanotrophic archaea (ANME) are ubiquitous in marine sediments where sulfate dependent anaerobic oxidation of methane (AOM) occurs. Despite considerable progress in the understanding of AOM, physiological details are still widely unresolved. We investigated two distinct microbial mat samples from the Black Sea that were dominated by either ANME-1 or ANME-2. The (13) C lipid stable isotope probing (SIP) method using labelled substances, namely methane, bicarbonate, acetate, and methanol, was applied, and the substrate-dependent methanogenic capabilities were tested. Our data provide strong evidence for a versatile physiology of both, ANME-1 and ANME-2. Considerable methane production rates (MPRs) from CO2 -reduction were observed, particularly from ANME-2 dominated samples and in the presence of methane, which supports the hypothesis of a co-occurrence of methanotrophy and methanogenesis in the AOM systems (AOM/MPR up to 2:1). The experiments also revealed strong methylotrophic capabilities through (13) C-assimilation from labelled methanol, which was independent of the presence of methane. Additionally, high MPRs from methanol were detected in both of the mat samples. As demonstrated by the (13) C-uptake into lipids, ANME-1 was found to thrive also under methane free conditions. Finally, C35 -isoprenoid hydrocarbons were identified as new lipid biomarkers for ANME-1, most likely functioning as a hydrogen sink during methanogenesis.


Assuntos
Archaea/metabolismo , Água do Mar/microbiologia , Anaerobiose/fisiologia , Archaea/química , Archaea/isolamento & purificação , Mar Negro , Isótopos de Carbono/análise , Marcação por Isótopo , Lipídeos/biossíntese , Lipídeos/química , Metano/biossíntese , Metano/química , Metanol/química , Oxirredução , Sulfatos
3.
Nature ; 449(7164): 898-901, 2007 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17882164

RESUMO

The short-chain hydrocarbons ethane, propane and butane are constituents of natural gas. They are usually assumed to be of thermochemical origin, but biological formation of ethane and propane has been also observed. Microbial utilization of short-chain hydrocarbons has been shown in some aerobic species but not in anaerobic species of bacteria. On the other hand, anaerobic utilization of short-chain hydrocarbons would in principle be expected because various anaerobic bacteria grow with higher homologues (> or =C(6)). Indeed, chemical analyses of hydrocarbon-rich habitats with limited or no access of oxygen indicated in situ biodegradation of short-chain hydrocarbons. Here we report the enrichment of sulphate-reducing bacteria (SRB) with such capacity from marine hydrocarbon seep areas. Propane or n-butane as the sole growth substrate led to sediment-free sulphate-reducing enrichment cultures growing at 12, 28 or 60 degrees C. With ethane, a slower enrichment with residual sediment was obtained at 12 degrees C. Isolation experiments resulted in a mesophilic pure culture (strain BuS5) that used only propane and n-butane (methane, isobutane, alcohols or carboxylic acids did not support growth). Complete hydrocarbon oxidation to CO2 and the preferential oxidation of 12C-enriched alkanes were observed with strain BuS5 and other cultures. Metabolites of propane included iso- and n-propylsuccinate, indicating a subterminal as well as an unprecedented terminal alkane activation with involvement of fumarate. According to 16S ribosomal RNA analyses, strain BuS5 affiliates with Desulfosarcina/Desulfococcus, a cluster of widespread marine SRB. An enrichment culture with propane growing at 60 degrees C was dominated by Desulfotomaculum-like SRB. Our results suggest that diverse SRB are able to thrive in seep areas and gas reservoirs on propane and butane, thus altering the gas composition and contributing to sulphide production.


Assuntos
Bactérias Anaeróbias/metabolismo , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Anaerobiose , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Butanos/metabolismo , Etano/metabolismo , Cinética , Dados de Sequência Molecular , Oceanos e Mares , Oxirredução , Filogenia , Propano/metabolismo , RNA Ribossômico 16S , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética
4.
Environ Microbiol ; 10(8): 1934-47, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18430014

RESUMO

A novel microbially diverse type of 1- to 5-cm-thick mat performing anaerobic oxidation of methane (AOM) and covering several square metres of the seafloor was discovered in the Black Sea at 180 m water depth. Contrary to other AOM-mat systems of the Black Sea these floating mats are not associated to free gas and are not stabilized by authigenic carbonates. However, supply of methane is ensured by the horizontal orientation of the mats acting as a cover of methane enriched fluids ascending from the underlying sediments. Thorough investigation of their community composition by molecular microbiology and lipid biomarkers, metabolic activities and elemental composition showed that the mats provide a clearly structured system with extracellular polymeric substances (EPS) building the framework of the mats. The top black zone, showing high rates of AOM (15 mumol g(dw) (-1) day(-1)), was dominated by ANME-2, while the following equally active pink layer was dominated by ANME-1 Archaea. The lowest AOM activity (2 mumol g(dw) (-1) day(-1)) and cell numbers were found in the greyish middle part delimited towards the sediment by a second pink, ANME-1-dominated and sometimes a black outer layer (ANME-2). Our work clearly shows that the different microbial populations are established along defined chemical gradients such as methane, sulfate or sulfide.


Assuntos
Sedimentos Geológicos/microbiologia , Metano/metabolismo , Água do Mar/microbiologia , Archaea/isolamento & purificação , Oceano Atlântico , Bactérias/isolamento & purificação , Ecossistema , Sulfatos/metabolismo
5.
J Contam Hydrol ; 65(1-2): 101-20, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12855203

RESUMO

We present an approach for characterizing in situ microbial degradation using the 13C/12C isotope fractionation of contaminants as an indicator of biodegradation. The 13C/12C isotope fractionation of aromatic hydrocarbons was studied in anoxic laboratory soil percolation columns with toluene or o-xylene as the sole carbon and electron source, and sulfate as electron acceptor. After approximately 2 months' of incubation, the soil microbial community degraded 32 mg toluene l(-1) and 44 mg o-xylene l(-1) to less than 0.05 mg l(-1), generating a stable concentration gradient in the column. The 13C/12C isotope ratio in the residual non-degraded fraction of toluene and o-xylene increased significantly, corresponding to isotope fractionation factors (alphaC) of 1.0015 and 1.0011, respectively. When the extent of biodegradation in the soil column was calculated based on the measured isotope ratios (R(t)) and an isotope fractionation factor (alphaC=1.0017) obtained from a sulfate-reducing batch culture the theoretical residual substrate concentrations (C(t)) matched the measured toluene concentrations in the column. This indicated that a calculation of biodegradation based on isotope fractionation could work in systems like soil columns. In a field study, a polluted, anoxic aquifer was analyzed for BTEX and PAH contaminants. These compounds were found to exhibit a significant concentration gradient along an 800-m groundwater flow path downstream of the source of contamination. A distinct increase in the carbon isotope ratio (delta13C) was observed for the residual non-degraded toluene (7.2 per thousand ), o-xylene (8.1 per thousand ) and naphthalene fractions (1.2 per thousand ). Based on the isotope values and the laboratory-derived isotope fractionation factors for toluene and o-xylene, the extent to which the residual substrate fraction in the monitoring wells had been degraded by microorganisms was calculated. The results revealed significant biodegradation along the groundwater flow path. In the wells at the end of the plume, the bioavailable toluene and o-xylene fractions had been almost completely reduced by in situ microbial degradation. Although indane and indene showed decreasing concentrations downstream of the groundwater flow path, suggesting microbial degradation, their carbon isotope ratios remained constant. As the physical properties of these compounds are similar to those of BTEX compounds, the constant isotope values of indane and indene indicated that microbial degradation did not lead to isotope fractionation of all aromatic hydrocarbons. In addition, physical interaction with the aquifer material during the groundwater passage did not significantly alter the carbon isotope composition of aromatic hydrocarbons.


Assuntos
Hidrocarbonetos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Solo , Abastecimento de Água
6.
FEMS Microbiol Lett ; 293(1): 73-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19222571

RESUMO

Hopanoids are important lipid components of many bacterial groups and are therefore ubiquitous in soils, sediments, and rocks. Until recently, it was believed that the synthesis of hopanoids is restricted to at least microaerophilic bacteria and consequently geological findings of hopanoids were used as an indication for oxygenated settings. Recent studies, however, demonstrated the biosynthesis of hopanoids under strictly anoxic conditions by a few bacterial groups, although their relevance is still unclear. We therefore extended our previous work studying hopanoid production among members of the genus Desulfovibrio, a group of sulphate-reducing bacteria (SRB) widely distributed in marine sediments, water-logged soils, and oil reservoirs. We found three species (Desulfovibrio halophilus, Desulfovibrio vulgaris Hildenborough, and Desulfovibrio africanus) to be devoid of hopanoids. In contrast, Desulfovibrio bastinii contains high amounts of nonextended hopanoids and bacteriohopanepolyols, with diploptene, 17beta(H),21beta(H)-bacteriohopane-32,33,34,35-tetrol, and 17beta(H),21beta(H)-35-aminobacteriohopane-32,33,34-triol being the major compounds. Because the moderately halophilic D. bastinii was isolated from a deep subsurface oil formation water, a contribution of hopanoids by SRB to the intrinsic oil hopanoid inventory is feasible, which would influence hopanoidal compositions often used for organic-geochemical characterization purposes. Nevertheless, our data indicate that hopanoid production might be common, but not obligate in the genus Desulfovibrio.


Assuntos
Desulfovibrio/classificação , Desulfovibrio/metabolismo , Metabolismo dos Lipídeos , Triterpenos/metabolismo , Microbiologia da Água , Anaerobiose , Desulfovibrio/genética , Desulfovibrio/isolamento & purificação , Lipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação , Bactérias Redutoras de Enxofre/metabolismo , Triterpenos/química
7.
Int J Syst Evol Microbiol ; 58(Pt 3): 585-90, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18319460

RESUMO

Strain HAL40b(T) was isolated from the marine sponge Haliclona sp. 1 collected at the Sula Ridge off the Norwegian coast and characterized by physiological, biochemical and phylogenetic analyses. The isolate was a small rod with a polar flagellum. It was aerobic, Gram-negative and oxidase- and catalase-positive. Optimal growth was observed at 20-30 degrees C, pH 7-9 and in 3 % NaCl. Substrate utilization tests were positive for arabinose, Tween 40 and Tween 80. Enzyme tests were positive for alkaline phosphatase, esterase lipase (C8), leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase and N-acetyl-beta-glucosaminidase. The predominant cellular fatty acid was C(17 : 1) omega8, followed by C(17 : 0) and C(18 : 1) omega7. Analysis by matrix-assisted laser desorption/ionization time-of-flight MS was used to characterize the strain, producing a characteristic low-molecular-mass protein pattern that could be used as a fingerprint for identification of members of this species. The DNA G+C content was 69.1 mol%. Phylogenetic analysis supported by 16S rRNA gene sequence comparison classified the strain as a member of the class Gammaproteobacteria. Strain HAL40b(T) was only distantly related to other marine bacteria including Neptunomonas naphthovorans and Marinobacter daepoensis (type strain sequence similarity >90 %). Based on its phenotypic, physiological and phylogenetic characteristics, it is proposed that the strain should be placed into a new genus as a representative of a novel species, Spongiibacter marinus gen. nov., sp. nov.; the type strain of Spongiibacter marinus is HAL40b(T) (=DSM 17750(T) =CCUG 54896(T)).


Assuntos
Gammaproteobacteria/classificação , Haliclona/microbiologia , Água do Mar/microbiologia , Cloreto de Sódio , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/análise , DNA Ribossômico/análise , Ácidos Graxos/análise , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/fisiologia , Genes de RNAr , Dados de Sequência Molecular , Noruega , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Int J Syst Evol Microbiol ; 58(Pt 8): 1815-20, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18676462

RESUMO

The bacterial strain Gp_4_7.1T, isolated from the marine sponge Isops phlegraei collected at the Sula Ridge off the Norwegian coast, was characterized. The isolate was a motile spirillum that was monopolarly and monotrichously flagellated. It was aerobic, Gram-negative, oxidase-positive and catalase-negative. Optimal growth occurred between 20 and 30 degrees C, at pH 7-8 and with a salt concentration of 2-3 % (w/v). The isolate showed a relatively restricted nutritional profile. Substrate utilization tests were only positive for arabinose. Enzyme tests were positive for esterase lipase C8, lipase C14, leucine arylamidase and naphthol-AS-BI-phosphohydrolase. The strain was not able to reduce nitrate. The major cellular fatty acids were C16:1 omega7 and C16:0. The DNA G+C content was 62.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison classified the strain as a member of the order Oceanospirillales in the class Gammaproteobacteria. Strain Gp_4_7.1T formed a distinct phyletic line with less than 94 % 16S rRNA gene sequence similarity to its closest relatives with validly published names. Based on the determined data, it is proposed that the strain represents a novel species in a new genus, Spongiispira norvegica gen. nov., sp. nov.; the type strain of Spongiispira norvegica is Gp_4_7.1T (=DSM 17749T =NCIMB 14401T).


Assuntos
Gammaproteobacteria/classificação , Poríferos/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/análise , DNA Ribossômico/análise , Ácidos Graxos/análise , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/fisiologia , Genes de RNAr , Biologia Marinha , Dados de Sequência Molecular , Noruega , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
9.
Environ Microbiol ; 8(7): 1220-7, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16817930

RESUMO

Sulfate reduction accounts for about a half of the remineralization of organic carbon in anoxic marine shelf regions. Moreover, it was already a major microbial process in the very early ocean at least 2.4 billion years before the present. Here we demonstrate for the first time the capability of sulfate-reducing bacteria (SRB) to biosynthesize hopanoids, compounds that are quantitatively important and widely distributed biomarkers in recent and fossil sediments dating back to the late Archean. We found high concentrations (9.8-12.3 mg per gram of dry cells) of non-extended and extended bacteriohopanoids (bacteriohopanetetrol, aminobacteriohopanetriol, aminobacteriohopanetetrol) in pure cultures of SRB belonging to the widely distributed genus Desulfovibrio. Biohopanoids were found--considered as membrane rigidifiers--in more than 50% of bacterial species analysed so far. However, their biosynthesis appeared to be restricted to aerobes or facultative anaerobes with a very few recently described exceptions. Consequently, findings of sedimentary hopanoids are often used as indication for oxygenated settings. Nevertheless, our findings shed new light on the presence of hopanoids in specific anoxic settings and suggests that SRB are substantial sources of this quantitatively important lipid class in recent but also past anoxic environments.


Assuntos
Bactérias Anaeróbias/metabolismo , Desulfovibrio/metabolismo , Lipídeos de Membrana/biossíntese , Água do Mar/microbiologia , Triterpenos/metabolismo , Archaea/metabolismo , Bactérias Anaeróbias/isolamento & purificação , Técnicas Bacteriológicas , Biomarcadores/química , Biomarcadores/metabolismo , Isótopos de Carbono , Desulfovibrio/genética , Desulfovibrio/isolamento & purificação , Lipídeos de Membrana/química , Filogenia , RNA Ribossômico 16S/genética , Terpenos/química , Terpenos/metabolismo , Triterpenos/química
10.
Extremophiles ; 9(6): 461-70, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15999222

RESUMO

The ability of a psychrotolerant microbial consortium to degrade crude oil at low temperatures was investigated. The enriched arctic microbial community was also tested for its ability to utilize various hydrocarbons, such as long-chain alkanes (n-C24 to n-C34), pristane, (methyl-)naphthalenes, and xylenes, as sole carbon and energy sources. Except for o-xylene and methylnaphthalenes, all tested compounds were metabolized under conditions that are typical for contaminated marine liquid sites, namely at pH 6-9 and at 4-27 degrees C. By applying molecular biological techniques (16S rDNA sequencing, DGGE) nine strains could be identified in the consortium. Five of these strains could be isolated in pure cultures. The involved strains were closely related to the following genera: Pseudoalteromonas (two species), Pseudomonas (two species), Shewanella (two species), Marinobacter (one species), Psychrobacter (one species), and Agreia (one species). Interestingly, the five isolated strains in different combinations were unable to degrade crude oil or its components significantly, indicating the importance of the four unculturable microorganisms in the degradation of single or of complex mixtures of hydrocarbons. The obtained mixed culture showed obvious advantages including stability of the consortium, wide range adaptability for crude oil degradation, and strong degradation ability of crude oil.


Assuntos
Petróleo , Microbiologia da Água , Regiões Árticas , Biodegradação Ambiental , Biofilmes , Cromatografia Gasosa , Clonagem Molecular , Contagem de Colônia Microbiana , Meios de Cultura , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos , Hidrocarbonetos/química , Concentração de Íons de Hidrogênio , Gelo , Espectrometria de Massas , Filogenia , RNA Ribossômico 16S/química , Água do Mar , Análise de Sequência de DNA , Poluentes do Solo , Temperatura , Fatores de Tempo
11.
Appl Environ Microbiol ; 71(8): 4345-51, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16085823

RESUMO

The anaerobic oxidation of methane (AOM) is a key process in the global methane cycle, and the majority of methane formed in marine sediments is oxidized in this way. Here we present results of an in vitro 13CH4 labeling study (delta13CH4, approximately 5,400 per thousand) in which microorganisms that perform AOM in a microbial mat from the Black Sea were used. During 316 days of incubation, the 13C uptake into the mat biomass increased steadily, and there were remarkable differences for individual bacterial and archaeal lipid compounds. The greatest shifts were observed for bacterial fatty acids (e.g., hexadec-11-enoic acid [16:1Delta11]; difference between the delta13C at the start and the end of the experiment [Deltadelta13C(start-end)], approximately 160 per thousand). In contrast, bacterial glycerol diethers exhibited only slight changes in delta13C (Deltadelta13C(start-end), approximately 10 per thousand). Differences were also found for individual archaeal lipids. Relatively high uptake of methane-derived carbon was observed for archaeol (Deltadelta13C(start-end), approximately 25 per thousand), a monounsaturated archaeol, and biphytanes, whereas for sn-2-hydroxyarchaeol there was considerably less change in the delta13C (Deltadelta13C(start-end), approximately 2 per thousand). Moreover, an increase in the uptake of 13C for compounds with a higher number of double bonds within a suite of polyunsaturated 2,6,10,15,19-pentamethyleicosenes indicated that in methanotrophic archaea there is a biosynthetic pathway similar to that proposed for methanogenic archaea. The presence of group-specific biomarkers (for ANME-1 and ANME-2 associations) and the observation that there were differences in 13C uptake into specific lipid compounds confirmed that multiple phylogenetically distinct microorganisms participate to various extents in biomass formation linked to AOM. However, the greater 13C uptake into the lipids of the sulfate-reducing bacteria (SRB) than into the lipids of archaea supports the hypothesis that there is autotrophic growth of SRB on small methane-derived carbon compounds supplied by the methane oxidizers.


Assuntos
Archaea/crescimento & desenvolvimento , Ecossistema , Lipídeos/biossíntese , Metano/metabolismo , Água do Mar/microbiologia , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Anaerobiose , Archaea/metabolismo , Biomassa , Isótopos de Carbono , Lipídeos/química , Oxirredução , Bactérias Redutoras de Enxofre/metabolismo
12.
J Nat Prod ; 68(5): 759-61, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15921424

RESUMO

Two new cyclic peroxides, 2 and 3, were isolated from a sample of the Norwegian sponge Plakortis simplex. Their structures including relative stereochemistry were elucidated by interpretation of MS and NMR data. Compound 3 exhibited moderate in vitro activity against six solid human tumor cell lines with IC50 values in the range 7-15 microg/mL.


Assuntos
Antineoplásicos/isolamento & purificação , Peróxidos/isolamento & purificação , Poríferos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Ciclização , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Noruega , Peróxidos/química , Peróxidos/farmacologia , Células Tumorais Cultivadas
13.
Environ Sci Technol ; 38(2): 609-16, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14750739

RESUMO

The aquifer of a former manufactured gas plant site, highly contaminated by dissolved monocyclic, heterocyclic, and polycyclic aromatic hydrocarbons, was studied to evaluate the applicability of carbon and hydrogen isotope fractionation to prove ongoing biodegradation of these compounds even in complex aquifer settings. The loss of toluene, o-xylene, p,m-xylene, and 2-methylnaphthalene was accompanied by a considerable carbon isotope fractionation. Additionally, a strong 2H enrichment in residual o-xylene was detected. All isotope fractionations observed could be related to established biochemical degradation mechanisms, each involving a C-H bond cleavage in the rate-determining step. In contrast, other compounds such as 1-methylnaphthalene, methylbenzofuran, and acenaphthene exhibited a uniform stable carbon isotope composition. However, a decrease in concentration for these compounds was observed in the flowpath of the aquifer. High threshold concentrations of acenaphthene downgradient indicate that this contaminant is, if at all, only marginally biodegraded. Detailed analyses of xylenes provided support that compound specific isotope analyses and subsequent application of the Rayleigh model may provide a valuable basis to distinguish between different biodegradation mechanisms as well as dissolution processes in heterogeneous aquifers.


Assuntos
Bactérias Anaeróbias/fisiologia , Hidrocarbonetos Aromáticos/metabolismo , Hidrogênio/análise , Poluentes do Solo/metabolismo , Poluentes da Água/metabolismo , Biodegradação Ambiental , Isótopos de Carbono/análise , Monitoramento Ambiental
14.
Appl Environ Microbiol ; 68(2): 852-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11823228

RESUMO

Anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin (1,2,3,4-tetrahydronaphthalene) was investigated with a sulfate-reducing enrichment culture obtained from a contaminated aquifer. Degradation studies with tetralin revealed 5,6,7,8-tetrahydro-2-naphthoic acid as a major metabolite indicating activation by addition of a C(1) unit to tetralin, comparable to the formation of 2-naphthoic acid in anaerobic naphthalene degradation. The activation reaction was specific for the aromatic ring of tetralin; 1,2,3,4-tetrahydro-2-naphthoic acid was not detected. The reduced 2-naphthoic acid derivatives tetrahydro-, octahydro-, and decahydro-2-naphthoic acid were identified consistently in supernatants of cultures grown with either naphthalene, 2-methylnaphthalene, or tetralin. In addition, two common ring cleavage products were identified. Gas chromatography-mass spectrometry (GC-MS) and high-resolution GC-MS analyses revealed a compound with a cyclohexane ring and two carboxylic acid side chains as one of the first ring cleavage products. The elemental composition was C(11)H(16)O(4) (C(11)H(16)O(4)-diacid), indicating that all carbon atoms of the precursor 2-naphthoic acid structure were preserved in this ring cleavage product. According to the mass spectrum, the side chains could be either an acetic acid and a propenic acid, or a carboxy group and a butenic acid side chain. A further ring cleavage product was identified as 2-carboxycyclohexylacetic acid and was assumed to be formed by beta-oxidation of one of the side chains of the C(11)H(16)O(4)-diacid. Stable isotope-labeling growth experiments with either (13)C-labeled naphthalene, per-deuterated naphthalene-d(8), or a (13)C-bicarbonate-buffered medium showed that the ring cleavage products derived from the introduced carbon source naphthalene. The series of identified metabolites suggests that anaerobic degradation of naphthalenes proceeds via reduction of the aromatic ring system of 2-naphthoic acid to initiate ring cleavage in analogy to the benzoyl-coenzyme A pathway for monoaromatic hydrocarbons. Our findings provide strong indications that further degradation goes through saturated compounds with a cyclohexane ring structure and not through monoaromatic compounds. A metabolic pathway for anaerobic degradation of bicyclic aromatic hydrocarbons with 2-naphthoic acid as the central intermediate is proposed.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Naftalenos/metabolismo , Tetra-Hidronaftalenos/metabolismo , Anaerobiose , Bactérias/isolamento & purificação , Biodegradação Ambiental , Meios de Cultura , Água Doce/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Oxirredução , Sulfatos/metabolismo , Poluição da Água
15.
Naturwissenschaften ; 89(9): 415-9, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12435095

RESUMO

The Hexactinellida ('glass sponges') are commonly considered to be the most basic metazoans. Steroids of 20 species from different taxa were studied for chemotaxonomy and biosynthetic implications. All Hexactinellida contain cholest-5-en-3beta-ol (cholesterol) and/or its saturated derivative 5alpha(H)-cholestan-3beta-ol, along with their C-24-alkylated homologues. Where 5alpha(H)-stanols are present, they regularly co-occur with their 3-keto analogues. The steroid concentrations generally decrease with increasing carbon numbers, similar to sterol distributions typically found in marine sediments. These features argue against de novo sterol biosynthesis operating in hexactinellid sponges. Rather, we suggest a dietary uptake of delta5-stenols and their stereoselective transformation via 3-keto intermediates to 5alpha(H)-stanols.


Assuntos
Poríferos/química , Esteroides/análise , Animais , Esteroides/classificação
16.
Proc Natl Acad Sci U S A ; 101(30): 11111-6, 2004 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-15258285

RESUMO

The anaerobic oxidation of methane (AOM) is one of the major sinks of this substantial greenhouse gas in marine environments. Recent investigations have shown that diverse communities of anaerobic archaea and sulfate-reducing bacteria are involved in AOM. Most of the relevant archaea are assigned to two distinct phylogenetic clusters, ANME-1 and ANME-2. A suite of specific (13)C-depleted lipids demonstrating the presence of consortia mediating AOM in fossil and recent environments has been established. Here we report on substantial differences in the lipid composition of microbial consortia sampled from distinct compartments of AOM-driven carbonate reefs growing in the northwestern Black Sea. Communities in which the dominant archaea are from the ANME-1 cluster yield internally cyclized tetraether lipids typical of thermophiles. Those in which ANME-2 archaea are dominant yield sn-2-hydroxyarchaeol accompanied by crocetane and crocetenes. The bacterial lipids from these communities are also distinct even though the sulfate-reducing bacteria all belong to the Desulfosarcina/Desulfococcus group. Nonisoprenoidal glycerol diethers are predominantly associated with ANME-1-dominated communities. Communities with ANME-2 yield mainly conventional, ester-linked diglycerides. ANME-1 archaea and associated sulfate-reducing bacteria seem to be enabled to use low concentrations of methane and to grow within a broad range of temperatures. Our results offer a tool for the study of recent and especially of fossil methane environments.


Assuntos
Bactérias Anaeróbias/classificação , Lipídeos de Membrana/análise , Methanobacterium/classificação , Bactérias Anaeróbias/crescimento & desenvolvimento , Geografia , Methanobacterium/crescimento & desenvolvimento , Filogenia , Microbiologia da Água
17.
Naturwissenschaften ; 89(2): 60-6, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12046622

RESUMO

Hexactinellid sponges are often considered to be the most ancient metazoans. Lipid biomarkers from 23 species were studied for information on their phylogenetic properties, particularly their disputed relation to the two other sponge classes (Demospongiae, Calcarea). The most prominent lipid compounds in the Hexactinellida comprise C28 to C32 polyenoic fatty acids. Their structures parallel the unique patterns found in demosponge membrane fatty acids ('demospongic acids') and strongly support a close phylogenetic association of the Demospongiae and the Hexactinellida. Both taxa also show unusual mid-chain methylated fatty acids (C15-C25) and irregular C25- and C40-isoprenoid hydrocarbons, tracers for specific eubacteria and Archaea, respectively. These biomarkers indicate a similar, highly conservative symbiont community, although some shift in the abundance of the associated microbiota was observed. The lack of these features in calcareous sponges further contradicts the still common view that Calcarea and Demospongiae are more closely related to each other than either is to the Hexactinellida.


Assuntos
Poríferos/classificação , Animais , Biomarcadores/análise , Geografia , Filogenia
18.
Science ; 297(5583): 1013-5, 2002 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-12169733

RESUMO

Massive microbial mats covering up to 4-meter-high carbonate buildups prosper at methane seeps in anoxic waters of the northwestern Black Sea shelf. Strong 13C depletions indicate an incorporation of methane carbon into carbonates, bulk biomass, and specific lipids. The mats mainly consist of densely aggregated archaea (phylogenetic ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). If incubated in vitro, these mats perform anaerobic oxidation of methane coupled to sulfate reduction. Obviously, anaerobic microbial consortia can generate both carbonate precipitation and substantial biomass accumulation, which has implications for our understanding of carbon cycling during earlier periods of Earth's history.


Assuntos
Archaea/metabolismo , Deltaproteobacteria/metabolismo , Metano/metabolismo , Água do Mar/microbiologia , Anaerobiose , Archaea/crescimento & desenvolvimento , Biomassa , Carbonatos/metabolismo , Precipitação Química , Deltaproteobacteria/crescimento & desenvolvimento , Ecossistema , Sedimentos Geológicos , Metabolismo dos Lipídeos , Microscopia de Fluorescência , Oceanos e Mares , Oxirredução , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Bactérias Redutoras de Enxofre/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA