Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 57(6): 3061-3072, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29488748

RESUMO

H3nota derivatives are among the most studied macrocyclic ligands and are widely used for metal ion binding in biology and medicine. Despite more than 40 years of chemical research on H3nota, the comprehensive study of its solution chemistry has been overlooked. Thus, the coordination behavior of H3nota with several divalent metal ions was studied in detail with respect to its application as a chelator for copper radioisotopes in medical imaging and therapy. In the solid-state structure of the free ligand in zwitterionic form, one proton is bound in the macrocyclic cavity through a strong intramolecular hydrogen-bond system supporting the high basicity of the ring amine groups (log Ka = 13.17). The high stability of the [Cu(nota)]- complex (log KML = 23.33) results in quantitative complex formation, even at pH <1.5. The ligand is moderately selective for Cu(II) over other metal ions (e.g., log KML(Zn) = 22.32 and log KML(Ni) = 19.24). This ligand forms a more stable complex with Mg(II) than with Ca(II) and forms surprisingly stable complexes with alkali-metal ions (stability order Li(I) > Na(I) > K(I)). Thus, H3nota shows high selectivity for small metal ions. The [Cu(nota)]- complex is hexacoordinated at neutral pH, and the equatorial N2O2 interaction is strengthened by complex protonation. Detailed kinetic studies showed that the Cu(II) complex is formed quickly (millisecond time scale at cCu ≈ 0.1 mM) through an out-of-cage intermediate. Conversely, conductivity measurements revealed that the Zn(II) complex is formed much more slowly than the Cu(II) complex. The Cu(II) complex has medium kinetic inertness (τ1/2 46 s; pH 0, 25 °C) and is less resistant to acid-assisted decomplexation than Cu(II) complexes with H4dota and H4teta. Surprisingly, [Cu(nota)]- decomplexation is decelerated in the presence of Zn(II) ions due to the formation of a stable dinuclear complex. In conclusion, H3nota is a good carrier of copper radionuclides because the [Cu(nota)]- complex is predominantly formed over complexes with common impurities in radiochemical formulations, Zn(II) and Ni(II), for thermodynamic and, primarily, for kinetic reasons. Furthermore, the in vivo stability of the [Cu(nota)]- complex may be increased due to the formation of dinuclear complexes when it interacts with biometals.


Assuntos
Cátions Bivalentes/química , Complexos de Coordenação/química , Cobre/química , Compostos Heterocíclicos/química , Radioisótopos de Cobre , Compostos Heterocíclicos com 1 Anel , Cinética , Ligantes , Modelos Químicos , Termodinâmica , Zinco/química
2.
Chemistry ; 23(10): 2350-2355, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-27966243

RESUMO

Cucurbit[7]uril (CB7) is a macrocycle with the ability to form the most stable supramolecular complexes in water ever reported for an artificial receptor. Its use for the design of advanced functional materials is, however, very limited because there is no example of a fully reversible CB7 based supramolecular complex enabling repetitious dissociation/association controlled by external stimuli. We report the synthesis of a new ferrocene amino acid that forms with CB7 a 1:1 inclusion complex that is stable in submicromolar concentration at low pH but dissociates at high pH. This reversible process was used for the sequential uptake and release of bispyridinium and antraquinone guests by CB7, which is controlled by adjusting the pH of the solution.

3.
Chemosphere ; 362: 142721, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945226

RESUMO

Arsenic (As) levels in particulate matter (PM) are routinely monitored in cities of developed countries. Despite advances in the knowledge of its inorganic species in PM in urban areas, organic species are often overlooked with no information on their behaviour in urban parks - areas with increased potential for As biomethylation. Therefore, the aim of this study was to characterize As distribution, bioaccessibility, seasonal variation and speciation (AsIII, AsV, MMA, DMA and TMAO) in PMx-PM10 of an urban park. Two sites with different distance from the road were selected for winter and summer sampling. From the PM samples, we gravimetrically determined PM10 concentrations in the air and via ICP-MS the total As content there. To assess the portion of bioaccessible As, water extractable As content was analysed. Simultaneously, the As species in PM10 water extracts were analysed via coupling of HPLC with ICP-MS method. There was no seasonal difference in PM10 concentration in the park, probably due to the increased summer PM load related to recreational activities in the park and park design. Spatial distribution of total As in PM10 and As fractional distribution in PMx suggested that As mostly didn't originate from traffic although highest As content was observed in the fine fraction (PM2.5) related to combustion processes. However, significant winter increase of As (determined by AsIII and AsV) despite the unchanged concentration of PM10 indicated a decisive influence of household heating-related combustion and possibly influence of reduced vegetation density. As present in the PM10 was mostly in bioaccessible form. Seasonal influence of As biomethylation was clearly demonstrated on the TMAO specie during the summer campaign. Except the significant summer TMAO increase, the results also indicated the biomethylation influence on DMA. Therefore, an increased risk of exposure to organic As species in urban parks can be expected during summer.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Arsênio , Monitoramento Ambiental , Material Particulado , Estações do Ano , Material Particulado/análise , Arsênio/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Parques Recreativos , Cidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA