Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 103(6): 2052-2068, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32559326

RESUMO

The manipulation of meiotic recombination in crops is essential to develop new plant varieties rapidly, helping to produce more cultivars in a sustainable manner. One option is to control the formation and repair of the meiosis-specific DNA double-strand breaks (DSBs) that initiate recombination between the homologous chromosomes and ultimately lead to crossovers. These DSBs are introduced by the evolutionarily conserved topoisomerase-like protein SPO11 and associated proteins. Here, we characterized the homoeologous copies of the SPO11-1 protein in hexaploid bread wheat (Triticum aestivum). The genome contains three SPO11-1 gene copies that exhibit 93-95% identity at the nucleotide level, and clearly the A and D copies originated from the diploid ancestors Triticum urartu and Aegilops tauschii, respectively. Furthermore, phylogenetic analysis of 105 plant genomes revealed a clear partitioning between monocots and dicots, with the seven main motifs being almost fully conserved, even between clades. The functional similarity of the proteins among monocots was confirmed through complementation analysis of the Oryza sativa (rice) spo11-1 mutant by the wheat TaSPO11-1-5D coding sequence. Also, remarkably, although the wheat and Arabidopsis SPO11-1 proteins share only 55% identity and the partner proteins also differ, the TaSPO11-1-5D cDNA significantly restored the fertility of the Arabidopsis spo11-1 mutant, indicating a robust functional conservation of the SPO11-1 protein activity across distant plants. These successful heterologous complementation assays, using both Arabidopsis and rice hosts, are good surrogates to validate the functionality of candidate genes and cDNA, as well as variant constructs, when the transformation and mutant production in wheat is much longer and more tedious.


Assuntos
Sequência Conservada/genética , Transferência Genética Horizontal/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Aegilops/genética , Proteínas de Arabidopsis/genética , Evolução Molecular , Meiose/genética , Oryza/genética , Alinhamento de Sequência
2.
Plant J ; 74(4): 678-89, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23445516

RESUMO

In indeterminate inflorescences, floral meristems develop on the flanks of the shoot apical meristem, at positions determined by auxin maxima. The floral identity of these meristems is conferred by a handful of genes called floral meristem identity genes, among which the LEAFY (LFY) transcription factor plays a prominent role. However, the molecular mechanism controlling the early emergence of floral meristems remains unknown. A body of evidence indicates that LFY may contribute to this developmental shift, but a direct effect of LFY on meristem emergence has not been demonstrated. We have generated a LFY allele with reduced floral function and revealed its ability to stimulate axillary meristem growth. This role is barely detectable in the lfy single mutant but becomes obvious in several double mutant backgrounds and plants ectopically expressing LFY. We show that this role requires the ability of LFY to bind DNA, and is mediated by direct induction of REGULATOR OF AXILLARY MERISTEMS1 (RAX1) by LFY. We propose that this function unifies the diverse roles described for LFY in multiple angiosperm species, ranging from monocot inflorescence identity to legume leaf development, and that it probably pre-dates the origin of angiosperms.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Meristema/genética , Fatores de Transcrição/genética , Alelos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cristalografia , Proteínas de Ligação a DNA , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Modelos Biológicos , Mutação , Motivos de Nucleotídeos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Multimerização Proteica , Estrutura Terciária de Proteína , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
3.
Front Plant Sci ; 5: 621, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25429295

RESUMO

The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA