Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
PLoS Pathog ; 16(3): e1008412, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226041

RESUMO

Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra virus (HeV) which causes severe clinical disease in humans and other susceptible hosts. Our understanding of the ability of bats to avoid clinical disease following infection with viruses such as HeV has come predominantly from in vitro studies focusing on innate immunity. Information on the early host response to infection in vivo is lacking and there is no comparative data on responses in bats compared with animals that succumb to disease. In this study, we examined the sites of HeV replication and the immune response of infected Australian black flying foxes and ferrets at 12, 36 and 60 hours post exposure (hpe). Viral antigen was detected at 60 hpe in bats and was confined to the lungs whereas in ferrets there was evidence of widespread viral RNA and antigen by 60 hpe. The mRNA expression of IFNs revealed antagonism of type I and III IFNs and a significant increase in the chemokine, CXCL10, in bat lung and spleen following infection. In ferrets, there was an increase in the transcription of IFN in the spleen following infection. Liquid chromatography tandem mass spectrometry (LC-MS/MS) on lung tissue from bats and ferrets was performed at 0 and 60 hpe to obtain a global overview of viral and host protein expression. Gene Ontology (GO) enrichment analysis of immune pathways revealed that six pathways, including a number involved in cell mediated immunity were more likely to be upregulated in bat lung compared to ferrets. GO analysis also revealed enrichment of the type I IFN signaling pathway in bats and ferrets. This study contributes important comparative data on differences in the dissemination of HeV and the first to provide comparative data on the activation of immune pathways in bats and ferrets in vivo following infection.


Assuntos
Antígenos Virais/imunologia , Vírus Hendra/imunologia , Infecções por Henipavirus/imunologia , Imunidade Celular , Imunidade Inata , Pulmão/imunologia , Modelos Imunológicos , Animais , Antígenos Virais/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quirópteros , Furões , Vírus Hendra/genética , Infecções por Henipavirus/genética , Infecções por Henipavirus/patologia , Interferons/genética , Interferons/imunologia , Pulmão/patologia , Pulmão/virologia , Especificidade da Espécie
2.
Vet Res ; 51(1): 58, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349781

RESUMO

Bovine ephemeral fever is a vector-borne disease of ruminants that occurs in tropical and sub-tropical regions of Africa, Asia and Australia. The disease is caused by a rhabdovirus, bovine ephemeral fever virus (BEFV), which occurs as a single serotype globally. Although several other closely related ephemeroviruses have been isolated from cattle and/or arthropods, only kotonkan virus from Nigeria and (tentatively) Mavingoni virus from Mayotte Island in the Indian Ocean have been previously associated with febrile disease. Here, we report the isolation of a novel virus (Hayes Yard virus; HYV) from blood collected in February 2000 from a bull (Bos indicus) in the Northern Territory of Australia. The animal was suffering from a severe ephemeral fever-like illness with neurological involvement, including recumbency and paralysis, and was euthanised. Histological examination of spinal cord and lung tissue identified extensive haemorrhage in the dura mata with moderate perineuronal oedema and extensive emphysema. HYV displayed cone-shaped morphology, typical of rhabdoviruses, and was found to be most closely related antigenically to Puchong virus (PUCV), isolated in 1965 from mosquitoes in Malaysia. Analysis of complete genome sequences of HYV (15 025 nt) and PUCV (14 932 nt) indicated that each has a complex organisation (3' N-P-M-G-GNS-α1-α2-ß-γ-L 5') and expression strategy, similar to that of BEFV. Based on an alignment of complete L protein sequences, HYV and PUCV cluster with other rhabdoviruses in the genus Ephemerovirus and appear to represent two new species. Neutralising antibody to HYV was also detected in a retrospective survey of cattle sera collected in the Northern Territory.


Assuntos
Doenças dos Bovinos/virologia , Ephemerovirus/isolamento & purificação , Infecções por Rhabdoviridae/veterinária , Animais , Bovinos , Febre Efêmera/virologia , Masculino , Northern Territory , Infecções por Rhabdoviridae/virologia
3.
PLoS Pathog ; 12(10): e1005974, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27783670

RESUMO

Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development.


Assuntos
Infecções por Henipavirus/genética , MicroRNAs/genética , Internalização do Vírus , Animais , Furões , Imunofluorescência , Estudo de Associação Genômica Ampla , Henipavirus , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Humanos , Reação em Cadeia da Polimerase em Tempo Real
4.
J Virol ; 90(4): 1888-97, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656692

RESUMO

UNLABELLED: Although avian H5N1 influenza virus has yet to develop the capacity for human-to-human spread, the severity of the rare cases of human infection has warranted intensive follow-up of potentially exposed individuals that may require antiviral prophylaxis. For countries where antiviral drugs are limited, the World Health Organization (WHO) has developed a risk categorization for different levels of exposure to environmental, poultry, or human sources of infection. While these take into account the infection source, they do not account for the likely mode of virus entry that the individual may have experienced from that source and how this could affect the disease outcome. Knowledge of the kinetics and spread of virus after natural routes of exposure may further inform the risk of infection, as well as the likely disease severity. Using the ferret model of H5N1 infection, we compared the commonly used but artificial inoculation method that saturates the total respiratory tract (TRT) with virus to upper respiratory tract (URT) and oral routes of delivery, those likely to be encountered by humans in nature. We show that there was no statistically significant difference in survival rate with the different routes of infection, but the disease characteristics were somewhat different. Following URT infection, viral spread to systemic organs was comparatively delayed and more focal than after TRT infection. By both routes, severe disease was associated with early viremia and central nervous system infection. After oral exposure to the virus, mild infections were common suggesting consumption of virus-contaminated liquids may be associated with seroconversion in the absence of severe disease. IMPORTANCE: Risks for human H5N1 infection include direct contact with infected birds and frequenting contaminated environments. We used H5N1 ferret infection models to show that breathing in the virus was more likely to produce clinical infection than swallowing contaminated liquid. We also showed that virus could spread from the respiratory tract to the brain, which was associated with end-stage disease, and very early viremia provided a marker for this. With upper respiratory tract exposure, infection of the brain was common but hard to detect, suggesting that human neurological infections might be typically undetected at autopsy. However, viral spread to systemic sites was slower after exposure to virus by this route than when virus was additionally delivered to the lungs, providing a better therapeutic window. In addition to exposure history, early parameters of infection, such as viremia, could help prioritize antiviral treatments for patients most at risk of succumbing to infection.


Assuntos
Modelos Animais de Doenças , Transmissão de Doença Infecciosa , Virus da Influenza A Subtipo H5N1/fisiologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Animais , Feminino , Furões , Masculino , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/transmissão , Medição de Risco , Análise de Sobrevida
5.
Vet Pathol ; 54(4): 649-660, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28494702

RESUMO

Newcastle disease is an important disease of poultry caused by virulent strains of Newcastle disease virus (NDV). During the 1998 to 2002 outbreaks of Newcastle disease in Australia, it was observed that the mild clinical signs seen in some chickens infected with NDV did not correlate with the viruses' virulent fusion protein cleavage site motifs or standard pathogenicity indices. The pathogenicity of 2 Australian NDV isolates was evaluated in experimentally challenged chickens based on clinical evaluation, histopathology, immunohistochemistry, and molecular techniques. One of these virus isolates, Meredith/02, was shown to induce only very mild clinical signs with no mortalities in an experimental setting, in contrast to the velogenic Herts 33/56 and Texas GB isolates. This minimal pathogenicity was associated with decreased virus replication and antigen distribution in tissues. This demonstrates that the Australian Meredith/02 NDV, despite possessing a virulent fusion protein cleavage site, did not display a velogenic phenotype.


Assuntos
Galinhas/virologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/patogenicidade , Doenças das Aves Domésticas/virologia , Animais , Austrália/epidemiologia , Surtos de Doenças/veterinária , Doença de Newcastle/epidemiologia , Doença de Newcastle/patologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária
7.
Emerg Infect Dis ; 21(12): 2182-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26583697

RESUMO

Hendra virus occasionally causes severe disease in horses and humans. In Australia in 2013, infection was detected in a dog that had been in contact with an infected horse. Abnormalities and viral RNA were found in the dog's kidney, brain, lymph nodes, spleen, and liver. Dogs should be kept away from infected horses.


Assuntos
Cães/virologia , Vírus Hendra/patogenicidade , Infecções por Henipavirus/transmissão , Zoonoses/transmissão , Animais , Quirópteros/virologia , Cães/sangue , Infecções por Henipavirus/virologia , Doenças dos Cavalos/virologia , Cavalos/virologia , Queensland , Carga Viral/veterinária , Zoonoses/virologia
8.
Proc Biol Sci ; 282(1798): 20142124, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25392474

RESUMO

Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.


Assuntos
Quirópteros/virologia , Modelos Biológicos , Infecções por Vírus de RNA/transmissão , Vírus de RNA/fisiologia , Zoonoses/transmissão , Animais , Humanos , Queensland , Infecções por Vírus de RNA/virologia , Vírus de RNA/isolamento & purificação , Zoonoses/virologia
9.
Emerg Infect Dis ; 20(3): 372-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24572697

RESUMO

In recent years, the emergence of several highly pathogenic zoonotic diseases in humans has led to a renewed emphasis on the interconnectedness of human, animal, and environmental health, otherwise known as One Health. For example, Hendra virus (HeV), a zoonotic paramyxovirus, was discovered in 1994, and since then, infections have occurred in 7 humans, each of whom had a strong epidemiologic link to similarly affected horses. As a consequence of these outbreaks, eradication of bat populations was discussed, despite their crucial environmental roles in pollination and reduction of the insect population. We describe the development and evaluation of a vaccine for horses with the potential for breaking the chain of HeV transmission from bats to horses to humans, thereby protecting horse, human, and environmental health. The HeV vaccine for horses is a key example of a One Health approach to the control of human disease.


Assuntos
Saúde Ambiental , Vírus Hendra/imunologia , Infecções por Henipavirus/prevenção & controle , Doenças dos Cavalos/prevenção & controle , Vacinas Virais/imunologia , Zoonoses/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Furões , Cobaias , Vírus Hendra/genética , Doenças dos Cavalos/patologia , Doenças dos Cavalos/virologia , Cavalos , Humanos , Imunização , Testes de Neutralização , Zoonoses/patologia , Zoonoses/virologia
10.
J Antimicrob Chemother ; 69(9): 2458-69, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24840623

RESUMO

OBJECTIVES: The emergence of the pandemic influenza A(H1N1)pdm09 virus in 2009 saw a significant increase in the therapeutic and prophylactic use of neuraminidase inhibitors (NAIs) to mitigate the impact of this highly transmissible virus. Prior to the pandemic, many countries stockpiled NAIs and developed pandemic plans for the use of antiviral drugs, based on either treatment of high-risk individuals and/or prophylaxis of contacts. However, to date there has been a lack of in vivo models to test the efficacy of treatment or prophylaxis with NAIs, for influenza-infected individuals or exposed contacts, in a household setting. METHODS: A ferret model of household contact was developed to study the efficacy of different prophylaxis regimens in preventing infection in contact ferrets exposed to influenza A(H1N1)pdm09-infected index ferrets. RESULTS: Among the different prophylactic regimens, contact ferrets receiving oseltamivir prophylaxis twice daily showed better outcomes than those receiving oseltamivir once daily. Benefits included a significant delay in the time to secondary infection, lower weight loss and higher activity levels. The treatment of index ferrets at 36 h post-infection did not influence either secondary infection rates or clinical symptoms in exposed contact ferrets. Neither prophylaxis nor treatment prevented infection or reduced the duration of viral shedding, although clinical symptoms did improve in infected animals receiving prophylaxis. CONCLUSIONS: Different oseltamivir prophylaxis regimens did not prevent infections, but consistently resulted in a reduction in symptoms in infected ferrets. However, oseltamivir prophylaxis failed to reduce viral titres, which warrants further investigation in humans.


Assuntos
Antivirais/administração & dosagem , Transmissão de Doença Infecciosa/prevenção & controle , Influenza Humana/patologia , Influenza Humana/prevenção & controle , Oseltamivir/administração & dosagem , Profilaxia Pré-Exposição/métodos , Animais , Modelos Animais de Doenças , Feminino , Furões , Humanos , Influenza Humana/transmissão , Masculino , Índice de Gravidade de Doença , Carga Viral , Eliminação de Partículas Virais
11.
J Virol ; 87(6): 3053-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23283953

RESUMO

In preparing for the threat of a pandemic of avian H5N1 influenza virus, we need to consider the significant delay (4 to 6 months) necessary to produce a strain-matched vaccine. As some degree of cross-reactivity between seasonal influenza vaccines and H5N1 virus has been reported, this was further explored in the ferret model to determine the targets of protective immunity. Ferrets were vaccinated with two intramuscular inoculations of trivalent inactivated split influenza vaccine or subcomponent vaccines, with and without adjuvant, and later challenged with a lethal dose of A/Vietnam/1203/2004 (H5N1) influenza virus. We confirmed that vaccination with seasonal influenza vaccine afforded partial protection against lethal H5N1 challenge and showed that use of either AlPO(4) or Iscomatrix adjuvant with the vaccine resulted in complete protection against disease and death. The protection was due exclusively to the H1N1 vaccine component, and although the hemagglutinin contributed to protection, the dominant protective response was targeted toward the neuraminidase (NA) and correlated with sialic acid cleavage-inhibiting antibody titers. Purified heterologous NA formulated with Iscomatrix adjuvant was also protective. These results suggest that adjuvanted seasonal trivalent vaccine could be used as an interim measure to decrease morbidity and mortality from H5N1 prior to the availability of a specific vaccine. The data also highlight that an inducer of cross-protective immunity is the NA, a protein whose levels are not normally monitored in vaccines and whose capacity to induce immunity in recipients is not normally assessed.


Assuntos
Anticorpos Antivirais/sangue , Proteção Cruzada , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Furões , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/administração & dosagem , Injeções Intramusculares , Infecções por Orthomyxoviridae/imunologia , Análise de Sobrevida
12.
J Virol ; 87(7): 3782-91, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23345523

RESUMO

Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease.


Assuntos
Vírus Hendra/fisiologia , MicroRNAs/metabolismo , Replicação Viral/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Proteínas de Ligação a DNA , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , NF-kappa B/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
PLoS Pathog ; 8(8): e1002836, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879820

RESUMO

The genus Henipavirus in the family Paramyxoviridae contains two viruses, Hendra virus (HeV) and Nipah virus (NiV) for which pteropid bats act as the main natural reservoir. Each virus also causes serious and commonly lethal infection of people as well as various species of domestic animals, however little is known about the associated mechanisms of pathogenesis. Here, we report the isolation and characterization of a new paramyxovirus from pteropid bats, Cedar virus (CedPV), which shares significant features with the known henipaviruses. The genome size (18,162 nt) and organization of CedPV is very similar to that of HeV and NiV; its nucleocapsid protein displays antigenic cross-reactivity with henipaviruses; and it uses the same receptor molecule (ephrin-B2) for entry during infection. Preliminary challenge studies with CedPV in ferrets and guinea pigs, both susceptible to infection and disease with known henipaviruses, confirmed virus replication and production of neutralizing antibodies although clinical disease was not observed. In this context, it is interesting to note that the major genetic difference between CedPV and HeV or NiV lies within the coding strategy of the P gene, which is known to play an important role in evading the host innate immune system. Unlike HeV, NiV, and almost all known paramyxoviruses, the CedPV P gene lacks both RNA editing and also the coding capacity for the highly conserved V protein. Preliminary study indicated that CedPV infection of human cells induces a more robust IFN-ß response than HeV.


Assuntos
Quirópteros/virologia , Genoma Viral/imunologia , Infecções por Henipavirus , Henipavirus , Evasão da Resposta Imune , Imunidade Inata , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Austrália , Quirópteros/imunologia , Furões , Cobaias , Henipavirus/genética , Henipavirus/imunologia , Henipavirus/isolamento & purificação , Infecções por Henipavirus/sangue , Infecções por Henipavirus/genética , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/virologia , Humanos
14.
Virol J ; 11: 102, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24890603

RESUMO

BACKGROUND: Nipah virus and Hendra virus are closely related and following natural or experimental exposure induce similar clinical disease. In humans, encephalitis is the most serious outcome of infection and, hitherto, research into the pathogenesis of henipavirus encephalitis has been limited by the lack of a suitable model. Recently we reported a wild-type mouse model of Hendra virus (HeV) encephalitis that should facilitate detailed investigations of its neuropathogenesis, including mechanisms of disease recrudescence. In this study we investigated the possibility of developing a similar model of Nipah virus encephalitis. FINDINGS: Aged and young adult wild type mice did not develop clinical disease including encephalitis following intranasal exposure to either the Malaysia (NiV-MY) or Bangladesh (NiV-BD) strains of Nipah virus. However viral RNA was detected in lung tissue of mice at euthanasia (21 days following exposure) accompanied by a non-neutralizing antibody response. In a subsequent time course trial this viral RNA was shown to be reflective of an earlier self-limiting and subclinical lower respiratory tract infection through successful virus re-isolation and antigen detection in lung. There was no evidence for viremia or infection of other organs, including brain. CONCLUSIONS: Mice develop a subclinical self-limiting lower respiratory tract infection but not encephalitis following intranasal exposure to NiV-BD or NiV-MY. These results contrast with those reported for HeV under similar exposure conditions in mice, demonstrating a significant biological difference in host clinical response to exposure with these viruses. This finding provides a new platform from which to explore the viral and/or host factors that determine the neuroinvasive ability of henipaviruses.


Assuntos
Infecções Assintomáticas , Modelos Animais de Doenças , Infecções por Henipavirus/patologia , Infecções por Henipavirus/virologia , Vírus Nipah/isolamento & purificação , Animais , Anticorpos Antivirais/sangue , Pulmão/virologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
15.
Vet Clin North Am Equine Pract ; 30(3): 579-89, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25281398

RESUMO

Hendra virus infection of horses occurred sporadically between 1994 and 2010 as a result of spill-over from the viral reservoir in Australian mainland flying-foxes, and occasional onward transmission to people also followed from exposure to affected horses. An unprecedented number of outbreaks were recorded in 2011 leading to heightened community concern. Release of an inactivated subunit vaccine for horses against Hendra virus represents the first commercially available product that is focused on mitigating the impact of a Biosafety Level 4 pathogen. Through preventing the development of acute Hendra virus disease in horses, vaccine use is also expected to reduce the risk of transmission of infection to people.


Assuntos
Vírus Hendra/isolamento & purificação , Infecções por Henipavirus/veterinária , Doenças dos Cavalos/virologia , Animais , Austrália/epidemiologia , Quirópteros/virologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/virologia , Doenças dos Cavalos/epidemiologia , Cavalos , Humanos , Zoonoses/epidemiologia , Zoonoses/virologia
16.
Curr Top Microbiol Immunol ; 359: 197-223, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22481140

RESUMO

Hendra virus and Nipah virus are recently discovered and closely related emerging viruses that now comprise the genus henipavirus within the sub-family Paramyxoviridae and are distinguished by their broad species tropism and in addition to bats can infect and cause fatal disease in a wide variety of mammalian hosts including humans. The high mortality associated with human and animal henipavirus infections has highlighted the importance and necessity of developing effective immunization strategies. The development of suitable animal models of henipavirus infection and pathogenesis has been critical for testing the efficacy of potential therapeutic approaches. Several henipavirus challenge models have been used and recent successes in both active and passive immunization strategies against henipaviruses have been reported which have all targeted the viral envelope glycoproteins.


Assuntos
Vírus Hendra/imunologia , Infecções por Henipavirus/prevenção & controle , Imunização Passiva , Vírus Nipah/imunologia , Vacinação , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos/administração & dosagem , Anticorpos/imunologia , Vírus Hendra/patogenicidade , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/patologia , Humanos , Vírus Nipah/patogenicidade , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/biossíntese , Tropismo Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/biossíntese
17.
Virol J ; 10: 95, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23521919

RESUMO

BACKGROUND: Hendra virus (HeV) is an Australian bat-borne zoonotic paramyxovirus that repeatedly spills-over to horses causing fatal disease. Human cases have all been associated with close contact with infected horses. METHODS: A full-length antigenome clone of HeV was assembled, a reporter gene (GFP or luciferase) inserted between the P and M genes and transfected to 293T cells to generate infectious reporter gene-encoding recombinant viruses. These viruses were then assessed in vitro for expression of the reporter genes. The GFP expressing recombinant HeV was used to challenge ferrets to assess the virulence and tissue distribution by monitoring GFP expression in infected cells. RESULTS: Three recombinant HeV constructs were successfully cloned and rescued; a wild-type virus, a GFP-expressing virus and a firefly luciferase-expressing virus. In vitro characterisation demonstrated expression of the reporter genes, with levels proportional to the initial inoculum levels. Challenge of ferrets with the GFP virus demonstrated maintenance of the fatal phenotype with disease progressing to death consistent with that observed previously with the parental wild-type isolate of HeV. GFP expression could be observed in infected tissues collected from animals at euthanasia. CONCLUSIONS: Here, we report on the first successful rescue of recombinant HeV, including wild-type virus and viruses expressing two different reporter genes encoded as an additional gene cassette inserted between the P and M genes. We further demonstrate that the GFP virus retained the ability to cause fatal disease in a well-characterized ferret model of henipavirus infection despite the genome being an extra 1290 nucleotides in length.


Assuntos
Genes Reporter , Vírus Hendra/genética , Vírus Hendra/patogenicidade , Infecções por Henipavirus/virologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Furões , Proteínas de Fluorescência Verde/genética , Humanos , Luciferases/genética , Masculino , Coloração e Rotulagem/métodos , Análise de Sobrevida , Virulência
18.
Virol J ; 10: 237, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23867060

RESUMO

BACKGROUND: Nipah virus (NiV) is a zoonotic virus belonging to the henipavirus genus in the family Paramyxoviridae. Since NiV was first identified in 1999, outbreaks have continued to occur in humans in Bangladesh and India on an almost annual basis with case fatality rates reported between 40% and 100%. METHODS: Ferrets were vaccinated with 4, 20 or 100 µg HeVsG formulated with the human use approved adjuvant, CpG, in a prime-boost regime. One half of the ferrets were exposed to NiV at 20 days post boost vaccination and the other at 434 days post vaccination. The presence of virus or viral genome was assessed in ferret fluids and tissues using real-time PCR, virus isolation, histopathology, and immunohistochemistry; serology was also carried out. Non-immunised ferrets were also exposed to virus to confirm the pathogenicity of the inoculum. RESULTS: Ferrets exposed to Nipah virus 20 days post vaccination remained clinically healthy. Virus or viral genome was not detected in any tissues or fluids of the vaccinated ferrets; lesions and antigen were not identified on immunohistological examination of tissues; and there was no increase in antibody titre during the observation period, consistent with failure of virus replication. Of the ferrets challenged 434 days post vaccination, all five remained well throughout the study period; viral genome - but not virus - was recovered from nasal secretions of one ferret given 20 µg HeVsG and bronchial lymph nodes of the other. There was no increase in antibody titre during the observation period, consistent with lack of stimulation of a humoral memory response. CONCLUSIONS: We have previously shown that ferrets vaccinated with 4, 20 or 100 µg HeVsG formulated with CpG adjuvant, which is currently in several human clinical trials, were protected from HeV disease. Here we show, under similar conditions of use, that the vaccine also provides protection against NiV-induced disease. Such protection persists for at least 12 months post-vaccination, with data supporting only localised and self-limiting virus replication in 2 of 5 animals. These results augur well for acceptability of the vaccine to industry.


Assuntos
Infecções por Henipavirus/prevenção & controle , Vírus Nipah/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Estruturas Animais/patologia , Estruturas Animais/virologia , Animais , Anticorpos Antivirais/sangue , Líquidos Corporais/virologia , Modelos Animais de Doenças , Furões , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/patologia , Infecções por Henipavirus/virologia , Masculino , Vírus Nipah/genética , Oligodesoxirribonucleotídeos/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Estruturais Virais/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
19.
Emerg Infect Dis ; 18(12): 1983-93, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23171621

RESUMO

Human infections with Nipah virus in Malaysia and Bangladesh are associated with markedly different patterns of transmission and pathogenicity. To compare the 2 strains, we conducted an in vivo study in which 2 groups of ferrets were oronasally exposed to either the Malaysia or Bangladesh strain of Nipah virus. Viral shedding and tissue tropism were compared between the 2 groups. Over the course of infection, significantly higher levels of viral RNA were recovered from oral secretions of ferrets infected with the Bangladesh strain. Higher levels of oral shedding of the Bangladesh strain of Nipah virus might be a key factor in onward transmission in outbreaks among humans.


Assuntos
Infecções por Henipavirus/transmissão , Vírus Nipah/fisiologia , Animais , Antígenos Virais/metabolismo , Bangladesh , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio/metabolismo , Endotélio/patologia , Epêndima/metabolismo , Epêndima/patologia , Furões/virologia , Infecções por Henipavirus/patologia , Infecções por Henipavirus/virologia , Humanos , Malásia , Masculino , Neurônios/metabolismo , Neurônios/patologia , Vírus Nipah/patogenicidade , Tonsila Palatina/metabolismo , Tonsila Palatina/patologia , Carga Viral , Eliminação de Partículas Virais
20.
Crit Care Med ; 40(3): 973-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22001587

RESUMO

BACKGROUND AND PURPOSE: Although use of hyperimmune serum to treat patients with severe influenza infection, infections resistant to antiviral drugs, or as an interim therapy during a pandemic is frequently proposed, there have been no randomized case-control trials to investigate its efficacy. Reports of the use of hyperimmune serum in human influenza infection are sporadic and studies in animal models are limited. METHODS: Ferrets exposed to an otherwise lethal dose of highly pathogenic avian influenza H5N1 were used as a model of severe human disease. Hyperimmune serum was administered 24 hrs before virus exposure, during early fever, or at the onset of initial clinical signs of influenza (lethargy, lack of appetite) to reflect clinically relevant intervention points. Animals were monitored for 14 days after challenge and assessed for local and constitutional signs of influenza as measured by survival, weight loss, activity scores, viral shedding, and seroconversion. RESULTS: All animals administered hyperimmune serum homologous to the challenge virus before challenge survived the infection with no significant morbidity. The majority of animals receiving hyperimmune serum after virus exposure and during early fever survived the period of observation but showed significant morbidity and prolonged convalescence. The majority of animals that received serum later in the disease course died of acute infection. CONCLUSION: In highly pathogenic systemic influenza infections, the window for successful intervention by administration of hyperimmune serum may be narrow.


Assuntos
Soros Imunes , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Furões , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA