RESUMO
Dengue virus is a major pathogen, and severe infections can lead to life-threatening dengue hemorrhagic fever. Dengue virus exists as four serotypes, and dengue hemorrhagic fever is often associated with secondary heterologous infections. Antibody-dependent enhancement (ADE) may drive higher viral loads in these secondary infections and is purported to result from antibodies that recognize dengue virus but fail to fully neutralize it. Here we characterize two antibodies, 2C8 and 3H5, that bind to the envelope protein. Antibody 3H5 is highly unusual as it not only is potently neutralizing but also promotes little if any ADE, whereas antibody 2C8 has strong capacity to promote ADE. We show that 3H5 shows resilient binding in endosomal pH conditions and neutralizes at low occupancy. Immunocomplexes of 3H5 and dengue virus do not efficiently interact with Fcγ receptors, which we propose is due to the binding mode of 3H5 and constitutes the primary mechanism of how ADE is avoided.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores/imunologia , Vírus da Dengue/imunologia , HumanosRESUMO
BACKGROUND: The kinetics and durability of T-cell responses to SARS-CoV-2 in children are not well characterized. We studied a cohort of children aged 6 months to 20 years with COVID-19 in whom peripheral blood mononuclear cells and sera were archived at approximately 1, 6, and 12 months after symptom onset. METHODS: We compared antibody responses (n = 85) and T-cell responses (n = 30) to nucleocapsid (N) and spike (S) glycoprotein over time across 4 age strata: 6 months to 5 years and 5-9, 10-14, and 15-20 years. RESULTS: N-specific antibody responses declined over time, becoming undetectable in 26 (81%) of 32 children by approximately 1 year postinfection. Functional breadth of anti-N CD4+ T-cell responses also declined over time and were positively correlated with N-antibody responses (Pearson r = .31, P = .008). CD4+ T-cell responses to S displayed greater functional breadth than N in unvaccinated children and, with neutralization titers, were stable over time and similar across age strata. Functional profiles of CD4+ T-cell responses against S were not significantly modulated by vaccination. CONCLUSIONS: Our data reveal durable age-independent T-cell immunity to SARS-CoV-2 structural proteins in children over time following COVID-19 infection as well as S-antibody responses in comparison with declining antibody responses to N.
Assuntos
Anticorpos Antivirais , Linfócitos T CD4-Positivos , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Criança , COVID-19/imunologia , SARS-CoV-2/imunologia , Pré-Escolar , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Adolescente , Lactente , Glicoproteína da Espícula de Coronavírus/imunologia , Feminino , Masculino , Linfócitos T CD4-Positivos/imunologia , Adulto Jovem , Linfócitos T/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Cinética , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Fosfoproteínas/imunologiaRESUMO
Electronic medical records (EMRs) are important for rapidly compiling information to determine disease characteristics (eg, symptoms) and risk factors (eg, underlying comorbidities, medications) for disease-related outcomes. To assess EMR data accuracy, agreement between EMR abstractions and patient interviews was evaluated. Symptoms, medical history, and medication use among patients with COVID-19 collected from EMRs and patient interviews were compared using overall agreement (ie, same answer in EMR and interview), reported agreement (yes answer in both EMR and interview among those who reported yes in either), and κ statistics. Overall, patients reported more symptoms in interviews than in EMR abstractions. Overall agreement was high (≥50% for 20 of 23 symptoms), but only subjective fever and dyspnea had reported agreement of ≥50%. The κ statistics for symptoms were generally low. Reported medical conditions had greater agreement with all condition categories (n = 10 of 10) having ≥50% overall agreement and half (n = 5 of 10) having ≥50% reported agreement. More nonprescription medications were reported in interviews than in EMR abstractions, leading to low reported agreement (28%). Discordance was observed for symptoms, medical history, and medication use between EMR abstractions and patient interviews. Investigations using EMRs to describe clinical characteristics and identify risk factors should consider the potential for incomplete data, particularly for symptoms and medications.
Assuntos
COVID-19 , Comorbidade , Registros Eletrônicos de Saúde , Entrevistas como Assunto , Humanos , COVID-19/epidemiologia , Registros Eletrônicos de Saúde/estatística & dados numéricos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , SARS-CoV-2 , Adulto , Confiabilidade dos DadosRESUMO
The impact of vaccination on SARS-CoV-2 infectiousness is not well understood. We compared longitudinal viral shedding dynamics in unvaccinated and fully vaccinated adults. SARS-CoV-2-infected adults were enrolled within 5 days of symptom onset and nasal specimens were self-collected daily for two weeks and intermittently for an additional two weeks. SARS-CoV-2 RNA load and infectious virus were analyzed relative to symptom onset stratified by vaccination status. We tested 1080 nasal specimens from 52 unvaccinated adults enrolled in the pre-Delta period and 32 fully vaccinated adults with predominantly Delta infections. While we observed no differences by vaccination status in maximum RNA levels, maximum infectious titers and the median duration of viral RNA shedding, the rate of decay from the maximum RNA load was faster among vaccinated; maximum infectious titers and maximum RNA levels were highly correlated. Furthermore, amongst participants with infectious virus, median duration of infectious virus detection was reduced from 7.5 days (IQR: 6.0-9.0) in unvaccinated participants to 6 days (IQR: 5.0-8.0) in those vaccinated (P = 0.02). Accordingly, the odds of shedding infectious virus from days 6 to 12 post-onset were lower among vaccinated participants than unvaccinated participants (OR 0.42 95% CI 0.19-0.89). These results indicate that vaccination had reduced the probability of shedding infectious virus after 5 days from symptom onset.
Assuntos
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/prevenção & controle , Humanos , Estudos Longitudinais , RNA Viral/genética , Vacinação , Eliminação de Partículas ViraisRESUMO
Importance: Bivalent mRNA COVID-19 vaccines were recommended in the US for children and adolescents aged 12 years or older on September 1, 2022, and for children aged 5 to 11 years on October 12, 2022; however, data demonstrating the effectiveness of bivalent COVID-19 vaccines are limited. Objective: To assess the effectiveness of bivalent COVID-19 vaccines against SARS-CoV-2 infection and symptomatic COVID-19 among children and adolescents. Design, Setting, and Participants: Data for the period September 4, 2022, to January 31, 2023, were combined from 3 prospective US cohort studies (6 sites total) and used to estimate COVID-19 vaccine effectiveness among children and adolescents aged 5 to 17 years. A total of 2959 participants completed periodic surveys (demographics, household characteristics, chronic medical conditions, and COVID-19 symptoms) and submitted weekly self-collected nasal swabs (irrespective of symptoms); participants submitted additional nasal swabs at the onset of any symptoms. Exposure: Vaccination status was captured from the periodic surveys and supplemented with data from state immunization information systems and electronic medical records. Main Outcome and Measures: Respiratory swabs were tested for the presence of the SARS-CoV-2 virus using reverse transcriptase-polymerase chain reaction. SARS-CoV-2 infection was defined as a positive test regardless of symptoms. Symptomatic COVID-19 was defined as a positive test and 2 or more COVID-19 symptoms within 7 days of specimen collection. Cox proportional hazards models were used to estimate hazard ratios for SARS-CoV-2 infection and symptomatic COVID-19 among participants who received a bivalent COVID-19 vaccine dose vs participants who received no vaccine or monovalent vaccine doses only. Models were adjusted for age, sex, race, ethnicity, underlying health conditions, prior SARS-CoV-2 infection status, geographic site, proportion of circulating variants by site, and local virus prevalence. Results: Of the 2959 participants (47.8% were female; median age, 10.6 years [IQR, 8.0-13.2 years]; 64.6% were non-Hispanic White) included in this analysis, 25.4% received a bivalent COVID-19 vaccine dose. During the study period, 426 participants (14.4%) had laboratory-confirmed SARS-CoV-2 infection. Among these 426 participants, 184 (43.2%) had symptomatic COVID-19, 383 (89.9%) were not vaccinated or had received only monovalent COVID-19 vaccine doses (1.38 SARS-CoV-2 infections per 1000 person-days), and 43 (10.1%) had received a bivalent COVID-19 vaccine dose (0.84 SARS-CoV-2 infections per 1000 person-days). Bivalent vaccine effectiveness against SARS-CoV-2 infection was 54.0% (95% CI, 36.6%-69.1%) and vaccine effectiveness against symptomatic COVID-19 was 49.4% (95% CI, 22.2%-70.7%). The median observation time after vaccination was 276 days (IQR, 142-350 days) for participants who received only monovalent COVID-19 vaccine doses vs 50 days (IQR, 27-74 days) for those who received a bivalent COVID-19 vaccine dose. Conclusion and Relevance: The bivalent COVID-19 vaccines protected children and adolescents against SARS-CoV-2 infection and symptomatic COVID-19. These data demonstrate the benefit of COVID-19 vaccine in children and adolescents. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Adolescente , Criança , Feminino , Humanos , Masculino , COVID-19/diagnóstico , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Estudos Prospectivos , SARS-CoV-2 , Vacinas de mRNA/uso terapêutico , Vacinas Combinadas/uso terapêutico , Pré-Escolar , Eficácia de Vacinas , Estados UnidosRESUMO
From 2 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) household transmission studies (enrolling April 2020 to January 2022) with rapid enrollment and specimen collection for 14 days, 61% (43/70) of primary cases had culturable virus detected ≥6 days post-onset. Risk of secondary infection among household contacts tended to be greater when primary cases had culturable virus detected after onset. Regardless of duration of culturable virus, most secondary infections (70%, 28/40) had serial intervals <6 days, suggesting early transmission. These data examine viral culture as a proxy for infectiousness, reaffirm the need for rapid control measures after infection, and highlight the potential for prolonged infectiousness (≥6 days) in many individuals.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Tennessee/epidemiologia , Características da Família , California/epidemiologiaRESUMO
BACKGROUND: Data assessing protection conferred from COVID-19 mRNA vaccination and/or prior SARS-CoV-2 infection during Delta and Omicron predominance periods in the United States are limited. METHODS: This cohort study included persons ≥18 years who had ≥1 health care encounter across 4 health systems and had been tested for SARS-CoV-2 before 26 August 2021. COVID-19 mRNA vaccination and prior SARS-CoV-2 infection defined the exposure. Cox regression estimated hazard ratios (HRs) for the Delta and Omicron periods; protection was calculated as (1-HR)×100%. RESULTS: Compared to unvaccinated and previously uninfected persons, during Delta predominance, protection against COVID-19-associated hospitalizations was high for those 2- or 3-dose vaccinated and previously infected, 3-dose vaccinated alone, and prior infection alone (range, 91%-97%, with overlapping 95% confidence intervals [CIs]); during Omicron predominance, estimates were lower (range, 77%-90%). Protection against COVID-19-associated emergency department/urgent care (ED/UC) encounters during Delta predominance was high for those exposure groups (range, 86%-93%); during Omicron predominance, protection remained high for those 3-dose vaccinated with or without a prior infection (76%; 95% CI = 67%-83% and 71%; 95% CI = 67%-73%, respectively). CONCLUSIONS: COVID-19 mRNA vaccination and/or prior SARS-CoV-2 infection provided protection against COVID-19-associated hospitalizations and ED/UC encounters regardless of variant. Staying up-to-date with COVID-19 vaccination still provides protection against severe COVID-19 disease, regardless of prior infection.
Assuntos
COVID-19 , Humanos , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2/genética , Vacinas contra COVID-19 , Estudos de Coortes , Vacinação , RNA Mensageiro/genéticaRESUMO
In a cohort of essential workers in the United States previously infected with SARS-CoV-2, risk factors for reinfection included being unvaccinated, infrequent mask use, time since first infection, and being non-Hispanic Black. Protecting workers from reinfection requires a multipronged approach including up-to-date vaccination, mask use as recommended, and reduction in underlying health disparities.
Assuntos
COVID-19 , Reinfecção , Humanos , SARS-CoV-2 , Fatores de RiscoRESUMO
Although reinfections with SARS-CoV-2 have occurred in the United States with increasing frequency, U.S. epidemiologic trends in reinfections and associated severe outcomes have not been characterized. Weekly counts of SARS-CoV-2 reinfections, total infections, and associated hospitalizations and deaths reported by 18 U.S. jurisdictions during September 5, 2021-December 31, 2022, were analyzed overall, by age group, and by five periods of SARS-CoV-2 variant predominance (Delta and Omicron [BA.1, BA.2, BA.4/BA.5, and BQ.1/BQ.1.1]). Among reported reinfections, weekly trends in the median intervals between infections and frequencies of predominant variants during previous infections were calculated. As a percentage of all infections, reinfections increased substantially from the Delta (2.7%) to the Omicron BQ.1/BQ.1.1 (28.8%) periods; during the same periods, increases in the percentages of reinfections among COVID-19-associated hospitalizations (from 1.9% [Delta] to 17.0% [Omicron BQ.1/BQ.1.1]) and deaths (from 1.2% [Delta] to 12.3% [Omicron BQ.1/BQ.1.1]) were also substantial. Percentages of all COVID-19 cases, hospitalizations, and deaths that were reinfections were consistently higher across variant periods among adults aged 18-49 years compared with those among adults aged ≥50 years. The median interval between infections ranged from 269 to 411 days by week, with a steep decline at the start of the BA.4/BA.5 period, when >50% of reinfections occurred among persons previously infected during the Alpha variant period or later. To prevent severe COVID-19 outcomes, including those following reinfection, CDC recommends staying up to date with COVID-19 vaccination and receiving timely antiviral treatments, when eligible.
Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , Adulto , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Vacinas contra COVID-19 , Hospitalização/tendências , Reinfecção/epidemiologia , Mortalidade HospitalarRESUMO
BACKGROUND: Households have emerged as important venues for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Little is known, however, regarding the magnitude and determinants of household transmission in increasingly vaccinated populations. METHODS: From September 2020 to January 2022, symptomatic nonhospitalized individuals with SARS-CoV-2 infection by RNA detection were identified within 5 days of symptom onset; all individuals resided with at least 1 other SARS-CoV-2-uninfected household member. These infected persons (cases) and their household members (contacts) were subsequently followed with questionnaire-based measurement and serial nasal specimen collection. The primary outcome was SARS-CoV-2 infection among contacts. RESULTS: We evaluated 42 cases and their 74 household contacts. Among the contacts, 32 (43%) became infected, of whom 5 (16%) were asymptomatic; 81% of transmissions occurred by 5 days after the case's symptom onset. From 21 unvaccinated cases, 14-day cumulative incidence of SARS-CoV-2 infection among contacts was 18/40 (45% [95% confidence interval {CI}, 29%-62%]), most of whom were unvaccinated. From 21 vaccinated cases, 14-day cumulative incidence of SARS-CoV-2 infection was 14/34 (41% [95% CI, 25%-59%]) among all contacts and 12/29 (41% [95% CI, 24%-61%]) among vaccinated contacts. At least 1 comorbid condition among cases and 10 or more days of RNA detection in cases were associated with increased risk of infection among contacts. CONCLUSIONS: Among households including individuals with symptomatic SARS-CoV-2 infection, both vaccinated-to-vaccinated and unvaccinated-to-unvaccinated transmission of SARS-CoV-2 to household contacts was common. Because vaccination alone did not notably reduce risk of infection, household contacts will need to employ additional interventions to avoid infection.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Estudos de Coortes , Humanos , Estudos Longitudinais , RNARESUMO
Before emergence in late 2021 of the highly transmissible B.1.1.529 (Omicron) variant of SARS-CoV-2, the virus that causes COVID-19 (1,2), several studies demonstrated that SARS-CoV-2 was unlikely to be cultured from specimens with high cycle threshold (Ct) values§ from real-time reverse transcription-polymerase chain reaction (RT-PCR) tests (suggesting low viral RNA levels) (3). Although CDC and others do not recommend attempting to correlate Ct values with the amount of infectious virus in the original specimen (4,5), low Ct values are sometimes used as surrogate markers for infectiousness in clinical, public health, or research settings without access to virus culture (5). However, the consistency in reliability of this practice across SARS-CoV-2 variants remains uncertain because Omicron-specific data on infectious virus shedding, including its relationship with RNA levels, are limited. In the current analysis, nasal specimens collected from an ongoing longitudinal cohort¶ (6,7) of nonhospitalized participants with positive SARS-CoV-2 test results living in the San Francisco Bay Area** were used to generate Ct values and assess for the presence of culturable SARS-CoV-2 virus; findings were compared between specimens from participants infected with pre-Omicron variants and those infected with the Omicron BA.1 sublineage. Among specimens with culturable virus detected, Ct values were higher (suggesting lower RNA levels) during Omicron BA.1 infections than during pre-Omicron infections, suggesting variant-specific differences in viral dynamics. Supporting CDC guidance, these data show that Ct values likely do not provide a consistent proxy for infectiousness across SARS-CoV-2 variants.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral/genética , Reprodutibilidade dos Testes , São Francisco/epidemiologiaRESUMO
Increases in severe respiratory illness and acute flaccid myelitis (AFM) among children and adolescents resulting from enterovirus D68 (EV-D68) infections occurred biennially in the United States during 2014, 2016, and 2018, primarily in late summer and fall. Although EV-D68 annual trends are not fully understood, EV-D68 levels were lower than expected in 2020, potentially because of implementation of COVID-19 mitigation measures (e.g., wearing face masks, enhanced hand hygiene, and physical distancing) (1). In August 2022, clinicians in several geographic areas notified CDC of an increase in hospitalizations of pediatric patients with severe respiratory illness and positive rhinovirus/enterovirus (RV/EV) test results.* Surveillance data were analyzed from multiple national data sources to characterize reported trends in acute respiratory illness (ARI), asthma/reactive airway disease (RAD) exacerbations, and the percentage of positive RV/EV and EV-D68 test results during 2022 compared with previous years. These data demonstrated an increase in emergency department (ED) visits by children and adolescents with ARI and asthma/RAD in late summer 2022. The percentage of positive RV/EV test results in national laboratory-based surveillance and the percentage of positive EV-D68 test results in pediatric sentinel surveillance also increased during this time. Previous increases in EV-D68 respiratory illness have led to substantial resource demands in some hospitals and have also coincided with increases in cases of AFM (2), a rare but serious neurologic disease affecting the spinal cord. Therefore, clinicians should consider AFM in patients with acute flaccid limb weakness, especially after respiratory illness or fever, and ensure prompt hospitalization and referral to specialty care for such cases. Clinicians should also test for poliovirus infection in patients suspected of having AFM because of the clinical similarity to acute flaccid paralysis caused by poliovirus. Ongoing surveillance for EV-D68 is critical to ensuring preparedness for possible future increases in ARI and AFM.
Assuntos
Asma , COVID-19 , Enterovirus Humano D , Infecções por Enterovirus , Mielite , Infecções Respiratórias , Adolescente , Asma/epidemiologia , Viroses do Sistema Nervoso Central , Criança , Surtos de Doenças , Infecções por Enterovirus/epidemiologia , Humanos , Mielite/epidemiologia , Doenças Neuromusculares , Infecções Respiratórias/epidemiologia , Rhinovirus , Estados Unidos/epidemiologiaRESUMO
By November 30, 2021, approximately 130,781 COVID-19-associated deaths, one in six of all U.S. deaths from COVID-19, had occurred in California and New York.* COVID-19 vaccination protects against infection with SARS-CoV-2 (the virus that causes COVID-19), associated severe illness, and death (1,2); among those who survive, previous SARS-CoV-2 infection also confers protection against severe outcomes in the event of reinfection (3,4). The relative magnitude and duration of infection- and vaccine-derived protection, alone and together, can guide public health planning and epidemic forecasting. To examine the impact of primary COVID-19 vaccination and previous SARS-CoV-2 infection on COVID-19 incidence and hospitalization rates, statewide testing, surveillance, and COVID-19 immunization data from California and New York (which account for 18% of the U.S. population) were analyzed. Four cohorts of adults aged ≥18 years were considered: persons who were 1) unvaccinated with no previous laboratory-confirmed COVID-19 diagnosis, 2) vaccinated (14 days after completion of a primary COVID-19 vaccination series) with no previous COVID-19 diagnosis, 3) unvaccinated with a previous COVID-19 diagnosis, and 4) vaccinated with a previous COVID-19 diagnosis. Age-adjusted hazard rates of incident laboratory-confirmed COVID-19 cases in both states were compared among cohorts, and in California, hospitalizations during May 30-November 20, 2021, were also compared. During the study period, COVID-19 incidence in both states was highest among unvaccinated persons without a previous COVID-19 diagnosis compared with that among the other three groups. During the week beginning May 30, 2021, compared with COVID-19 case rates among unvaccinated persons without a previous COVID-19 diagnosis, COVID-19 case rates were 19.9-fold (California) and 18.4-fold (New York) lower among vaccinated persons without a previous diagnosis; 7.2-fold (California) and 9.9-fold lower (New York) among unvaccinated persons with a previous COVID-19 diagnosis; and 9.6-fold (California) and 8.5-fold lower (New York) among vaccinated persons with a previous COVID-19 diagnosis. During the same period, compared with hospitalization rates among unvaccinated persons without a previous COVID-19 diagnosis, hospitalization rates in California followed a similar pattern. These relationships changed after the SARS-CoV-2 Delta variant became predominant (i.e., accounted for >50% of sequenced isolates) in late June and July. By the week beginning October 3, compared with COVID-19 cases rates among unvaccinated persons without a previous COVID-19 diagnosis, case rates among vaccinated persons without a previous COVID-19 diagnosis were 6.2-fold (California) and 4.5-fold (New York) lower; rates were substantially lower among both groups with previous COVID-19 diagnoses, including 29.0-fold (California) and 14.7-fold lower (New York) among unvaccinated persons with a previous diagnosis, and 32.5-fold (California) and 19.8-fold lower (New York) among vaccinated persons with a previous diagnosis of COVID-19. During the same period, compared with hospitalization rates among unvaccinated persons without a previous COVID-19 diagnosis, hospitalization rates in California followed a similar pattern. These results demonstrate that vaccination protects against COVID-19 and related hospitalization, and that surviving a previous infection protects against a reinfection and related hospitalization. Importantly, infection-derived protection was higher after the Delta variant became predominant, a time when vaccine-induced immunity for many persons declined because of immune evasion and immunologic waning (2,5,6). Similar cohort data accounting for booster doses needs to be assessed, as new variants, including Omicron, circulate. Although the epidemiology of COVID-19 might change with the emergence of new variants, vaccination remains the safest strategy to prevent SARS-CoV-2 infections and associated complications; all eligible persons should be up to date with COVID-19 vaccination. Additional recommendations for vaccine doses might be warranted in the future as the virus and immunity levels change.
Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/epidemiologia , COVID-19/prevenção & controle , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Vacinação/estatística & dados numéricos , Adulto , California/epidemiologia , Estudos de Coortes , Humanos , Incidência , Pessoa de Meia-Idade , New York/epidemiologiaRESUMO
We aimed to characterize presence of culturable virus in clinical specimens during acute illness, and antibody kinetics up to 6 months after symptom onset, among 14 early patients with coronavirus disease 2019 in the United States. We isolated viable severe acute respiratory syndrome coronavirus 2 from real-time reverse-transcription polymerase chain reaction-positive respiratory specimens collected during days 0-8 after onset, but not after. All 13 patients with 2 or more serum specimens developed anti-spike antibodies; 12 developed detectable neutralizing antibodies. We did not isolate virus after detection of neutralizing antibodies. Eight participants provided serum at 6 months after onset; all retained detectable anti-spike immunoglobulin G, and half had detectable neutralizing antibodies. Two participants reported not feeling fully recovered at 6 months.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , COVID-19/imunologia , Soroconversão/fisiologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/virologia , Seguimentos , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Estados UnidosRESUMO
To improve recognition of coronavirus disease (COVID-19) and inform clinical and public health guidance, we randomly selected 600 COVID-19 case-patients in Colorado. A telephone questionnaire captured symptoms experienced, when symptoms occurred, and how long each lasted. Among 128 hospitalized patients, commonly reported symptoms included fever (84%), fatigue (83%), cough (73%), and dyspnea (72%). Among 236 nonhospitalized patients, commonly reported symptoms included fatigue (90%), fever (83%), cough (83%), and myalgia (74%). The most commonly reported initial symptoms were cough (21%-25%) and fever (20%-25%). In multivariable analysis, vomiting, dyspnea, altered mental status, dehydration, and wheezing were significantly associated with hospitalization, whereas rhinorrhea, headache, sore throat, and anosmia or ageusia were significantly associated with nonhospitalization. General symptoms and upper respiratory symptoms occurred earlier in disease, and anosmia, ageusia, lower respiratory symptoms, and gastrointestinal symptoms occurred later. Symptoms should be considered alongside other epidemiologic factors in clinical and public health decisions regarding potential COVID-19 cases.
Assuntos
COVID-19/complicações , COVID-19/epidemiologia , Pacientes Internados/estatística & dados numéricos , Pacientes Ambulatoriais/estatística & dados numéricos , SARS-CoV-2 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Criança , Pré-Escolar , Colorado/epidemiologia , Tosse/epidemiologia , Tosse/virologia , Progressão da Doença , Dispneia/epidemiologia , Dispneia/virologia , Fadiga/epidemiologia , Fadiga/virologia , Feminino , Febre/epidemiologia , Febre/virologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mialgia/epidemiologia , Mialgia/virologia , Avaliação de Sintomas , Adulto JovemRESUMO
We characterized common exposures reported by a convenience sample of 202 US patients with coronavirus disease during January-April 2020 and identified factors associated with presumed household transmission. The most commonly reported settings of known exposure were households and healthcare facilities; among case-patients who had known contact with a confirmed case-patient compared with those who did not, healthcare occupations were more common. Among case-patients without known contact, use of public transportation was more common. Within the household, presumed transmission was highest from older (>65 years) index case-patients and from children to parents, independent of index case-patient age. These findings may inform guidance for limiting transmission and emphasize the value of testing to identify community-acquired infections.
Assuntos
COVID-19 , Idoso , COVID-19/transmissão , Criança , Vírus de DNA , Características da Família , Humanos , SARS-CoV-2 , Estados Unidos/epidemiologiaRESUMO
We compared the characteristics of hospitalized and nonhospitalized patients who had coronavirus disease in Atlanta, Georgia, USA. We found that risk for hospitalization increased with a patient's age and number of concurrent conditions. We also found a potential association between hospitalization and high hemoglobin A1c levels in persons with diabetes.
Assuntos
COVID-19 , Diabetes Mellitus , Hemoglobinas Glicadas/análise , Hospitalização/estatística & dados numéricos , Hipertensão , Obesidade , Administração dos Cuidados ao Paciente , Fatores Etários , COVID-19/epidemiologia , COVID-19/psicologia , COVID-19/terapia , Diabetes Mellitus/sangue , Diabetes Mellitus/epidemiologia , Progressão da Doença , Feminino , Georgia/epidemiologia , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-Idade , Multimorbidade , Obesidade/diagnóstico , Obesidade/epidemiologia , Aceitação pelo Paciente de Cuidados de Saúde , Administração dos Cuidados ao Paciente/métodos , Administração dos Cuidados ao Paciente/normas , Administração dos Cuidados ao Paciente/estatística & dados numéricos , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Fatores de Risco , SARS-CoV-2RESUMO
BACKGROUND: Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in China in December, 2019. In January, 2020, state, local, and federal public health agencies investigated the first case of COVID-19 in Illinois, USA. METHODS: Patients with confirmed COVID-19 were defined as those with a positive SARS-CoV-2 test. Contacts were people with exposure to a patient with COVID-19 on or after the patient's symptom onset date. Contacts underwent active symptom monitoring for 14 days following their last exposure. Contacts who developed fever, cough, or shortness of breath became persons under investigation and were tested for SARS-CoV-2. A convenience sample of 32 asymptomatic health-care personnel contacts were also tested. FINDINGS: Patient 1-a woman in her 60s-returned from China in mid-January, 2020. One week later, she was hospitalised with pneumonia and tested positive for SARS-CoV-2. Her husband (Patient 2) did not travel but had frequent close contact with his wife. He was admitted 8 days later and tested positive for SARS-CoV-2. Overall, 372 contacts of both cases were identified; 347 underwent active symptom monitoring, including 152 community contacts and 195 health-care personnel. Of monitored contacts, 43 became persons under investigation, in addition to Patient 2. These 43 persons under investigation and all 32 asymptomatic health-care personnel tested negative for SARS-CoV-2. INTERPRETATION: Person-to-person transmission of SARS-CoV-2 occurred between two people with prolonged, unprotected exposure while Patient 1 was symptomatic. Despite active symptom monitoring and testing of symptomatic and some asymptomatic contacts, no further transmission was detected. FUNDING: None.
Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , COVID-19 , China , Busca de Comunicante , Feminino , Humanos , Illinois , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , ViagemRESUMO
The COVID-19 pandemic and subsequent implementation of nonpharmaceutical interventions (e.g., cessation of global travel, mask use, physical distancing, and staying home) reduced transmission of some viral respiratory pathogens (1). In the United States, influenza activity decreased in March 2020, was historically low through the summer of 2020 (2), and remained low during October 2020-May 2021 (<0.4% of respiratory specimens with positive test results for each week of the season). Circulation of other respiratory pathogens, including respiratory syncytial virus (RSV), common human coronaviruses (HCoVs) types OC43, NL63, 229E, and HKU1, and parainfluenza viruses (PIVs) types 1-4 also decreased in early 2020 and did not increase until spring 2021. Human metapneumovirus (HMPV) circulation decreased in March 2020 and remained low through May 2021. Respiratory adenovirus (RAdV) circulated at lower levels throughout 2020 and as of early May 2021. Rhinovirus and enterovirus (RV/EV) circulation decreased in March 2020, remained low until May 2020, and then increased to near prepandemic seasonal levels. Circulation of respiratory viruses could resume at prepandemic levels after COVID-19 mitigation practices become less stringent. Clinicians should be aware of increases in some respiratory virus activity and remain vigilant for off-season increases. In addition to the use of everyday preventive actions, fall influenza vaccination campaigns are an important component of prevention as COVID-19 mitigation measures are relaxed and schools and workplaces resume in-person activities.
Assuntos
COVID-19/epidemiologia , Influenza Humana/epidemiologia , Pandemias , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Humanos , Estados Unidos/epidemiologiaRESUMO
Enterovirus D68 (EV-D68) is associated with a broad spectrum of illnesses, including mild to severe acute respiratory illness (ARI) and acute flaccid myelitis (AFM). Enteroviruses, including EV-D68, are typically detected in the United States during late summer through fall, with year-to-year fluctuations. Before 2014, EV-D68 was infrequently reported to CDC (1). However, numbers of EV-D68 detection have increased in recent years, with a biennial pattern observed during 2014-2018 in the United States, after the expansion of surveillance and wider availability of molecular testing. In 2014, a national outbreak of EV-D68 was detected (2). EV-D68 was also reported in 2016 via local (3) and passive national (4) surveillance. EV-D68 detections were limited in 2017, but substantial circulation was observed in 2018 (5). To assess recent levels of circulation, EV-D68 detections in respiratory specimens collected from patients aged <18 years* with ARI evaluated in emergency departments (EDs) or admitted to one of seven U.S. medical centers within the New Vaccine Surveillance Network (NVSN) were summarized. This report provides a provisional description of EV-D68 detections during July-November in 2018, 2019 and 2020, and describes the demographic and clinical characteristics of these patients. In 2018, a total of 382 EV-D68 detections in respiratory specimens obtained from patients aged <18 years with ARI were reported by NVSN; the number decreased to six detections in 2019 and 30 in 2020. Among patients aged <18 years with EV-D68 in 2020, 22 (73%) were non-Hispanic Black (Black) persons. EV-D68 detections in 2020 were lower than anticipated based on the biennial circulation pattern observed since 2014. The circulation of EV-D68 in 2020 might have been limited by widespread COVID-19 mitigation measures; how these changes in behavior might influence the timing and levels of circulation in future years is unknown. Ongoing monitoring of EV-D68 detections is warranted for preparedness for EV-D68-associated ARI and AFM.