RESUMO
Switchgrass (Panicum virgatum L.) is a leading candidate for a dedicated lignocellulosic biofuel feedstock owing to its high biomass production, wide adaptation and low agronomic input requirements. Lignin in cell walls of switchgrass, and other lignocellulosic feedstocks, severely limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars and subsequently biofuels. Low-lignin transgenic switchgrass plants produced by the down-regulation of caffeic acid O-methyltransferase (COMT), a lignin biosynthetic enzyme, were analysed in the field for two growing seasons. COMT transcript abundance, lignin content and the syringyl/guaiacyl lignin monomer ratio were consistently lower in the COMT-down-regulated plants throughout the duration of the field trial. In general, analyses with fully established plants harvested during the second growing season produced results that were similar to those observed in previous greenhouse studies with these plants. Sugar release was improved by up to 34% and ethanol yield by up to 28% in the transgenic lines relative to controls. Additionally, these results were obtained using senesced plant material harvested at the end of the growing season, compared with the young, green tissue that was used in the greenhouse experiments. Another important finding was that transgenic plants were not more susceptible to rust (Puccinia emaculata). The results of this study suggest that lignin down-regulation in switchgrass can confer real-world improvements in biofuel yield without negative consequences to biomass yield or disease susceptibility.
Assuntos
Biocombustíveis , Lignina/biossíntese , Panicum/genética , Biomassa , Parede Celular/química , Celulose/química , Resistência à Doença/genética , Regulação para Baixo , Etanol/química , Regulação da Expressão Gênica de Plantas , Lignina/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Panicum/crescimento & desenvolvimento , Panicum/microbiologia , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. RESULTS: In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell defense mechanisms. CONCLUSION: These results suggest the mechanisms of tolerance for the Populus hydrolysate-tolerant mutant strain of C. thermocellum are based on increased cellular efficiency caused apparently by downregulation of non-critical genes and increasing the expression of genes in energy production and conversion rather than tolerance to specific hydrolysate components. The wild type, conversely, responds to hydrolysate media by down-regulating growth genes and up-regulating stress response genes.
Assuntos
Antibacterianos/farmacologia , Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/genética , Tolerância a Medicamentos , Perfilação da Expressão Gênica , Extratos Vegetais/farmacologia , Populus/química , Antibacterianos/isolamento & purificação , Celulose/química , Clostridium thermocellum/crescimento & desenvolvimento , Meios de Cultura/química , Hidrólise , Redes e Vias Metabólicas/genética , Extratos Vegetais/isolamento & purificaçãoRESUMO
Switchgrass is a leading dedicated bioenergy feedstock in the United States because it is a native, high-yielding, perennial prairie grass with a broad cultivation range and low agronomic input requirements. Biomass conversion research has developed processes for production of ethanol and other biofuels, but they remain costly primarily because of the intrinsic recalcitrance of biomass. We show here that genetic modification of switchgrass can produce phenotypically normal plants that have reduced thermal-chemical (≤180 °C), enzymatic, and microbial recalcitrance. Down-regulation of the switchgrass caffeic acid O-methyltransferase gene decreases lignin content modestly, reduces the syringyl:guaiacyl lignin monomer ratio, improves forage quality, and, most importantly, increases the ethanol yield by up to 38% using conventional biomass fermentation processes. The down-regulated lines require less severe pretreatment and 300-400% lower cellulase dosages for equivalent product yields using simultaneous saccharification and fermentation with yeast. Furthermore, fermentation of diluted acid-pretreated transgenic switchgrass using Clostridium thermocellum with no added enzymes showed better product yields than obtained with unmodified switchgrass. Therefore, this apparent reduction in the recalcitrance of transgenic switchgrass has the potential to lower processing costs for biomass fermentation-derived fuels and chemicals significantly. Alternatively, such modified transgenic switchgrass lines should yield significantly more fermentation chemicals per hectare under identical process conditions.
Assuntos
Biocombustíveis/análise , Etanol/metabolismo , Técnicas Genéticas , Lignina/genética , Metiltransferases/genética , Panicum/genética , Panicum/metabolismo , Celulase/metabolismo , Regulação para Baixo/genética , Fermentação , Hidrólise , Dados de Sequência Molecular , Panicum/enzimologia , Panicum/crescimento & desenvolvimento , Fenótipo , Plantas Geneticamente ModificadasRESUMO
Clostridium thermocellum is a thermophilic, obligately anaerobic, gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.
Assuntos
Álcool Desidrogenase/genética , Clostridium thermocellum/genética , Tolerância a Medicamentos/genética , Etanol/metabolismo , Mutação , Aldeído Oxirredutases , Clostridium thermocellum/enzimologia , Clostridium thermocellum/fisiologia , NAD , NADPRESUMO
The extremely thermophilic, Gram-positive bacteria Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis efficiently degrade both cellulose and hemicellulose, which makes them relevant models for lignocellulosic biomass deconstruction to produce sustainable biofuels. To identify the shared and unique features of secreted cellulolytic apparatuses from C. bescii and C. obsidiansis, label-free quantitative proteomics was used to analyze protein abundance over the course of fermentative growth on crystalline cellulose. Both organisms' secretomes consisted of more than 400 proteins, of which the most abundant were multidomain glycosidases, extracellular solute-binding proteins, flagellin, putative pectate lyases, and uncharacterized proteins with predicted secretion signals. Among the identified proteins, 53 to 57 significantly changed in abundance during cellulose fermentation in favor of glycosidases and extracellular binding proteins. Mass spectrometric characterizations, together with cellulase activity measurements, revealed a substantial abundance increase of a few bifunctional multidomain glycosidases composed of glycosidase (GH) domain family 5, 9, 10, 44, or 48 and family 3 carbohydrate binding (CBM3) modules. In addition to their orthologous cellulases, the organisms expressed unique glycosidases with different domain organizations: C. obsidiansis expressed the COB47_1671 protein with GH10/5 domains, while C. bescii expressed the Athe_1857 (GH10/48) and Athe_1859 (GH5/44) proteins. Glycosidases containing CBM3 domains were selectively enriched via binding to amorphous cellulose. Preparations from both bacteria contained highly thermostable enzymes with optimal cellulase activities at 85°C and pH 5. The C. obsidiansis preparation, however, had higher cellulase specific activity and greater thermostability. The C. bescii culture produced more extracellular protein and additional SDS-PAGE bands that demonstrated glycosidase activity.
Assuntos
Celulases/análise , Celulases/metabolismo , Bactérias Gram-Positivas/enzimologia , Proteômica/métodos , Celulose/metabolismo , Eletroforese em Gel de Poliacrilamida , Fermentação , Perfilação da Expressão Gênica , Bactérias Gram-Positivas/crescimento & desenvolvimento , Espectrometria de MassasRESUMO
BACKGROUND: The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. RESULTS: A time-series analysis of gene expression revealed changes in transcript levels of ~40% of genes (~1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. CONCLUSIONS: Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cells' movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered.
Assuntos
Celulose/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Perfilação da Expressão Gênica , Celulossomas/metabolismo , Clostridium thermocellum/crescimento & desenvolvimento , Fermentação , Regulação Bacteriana da Expressão Gênica , Fatores de TempoRESUMO
Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.
Assuntos
Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/genética , Etanol/toxicidade , Viabilidade Microbiana/efeitos dos fármacos , Biomassa , Celobiose/metabolismo , Celulose/metabolismo , Clostridium thermocellum/crescimento & desenvolvimento , Clostridium thermocellum/fisiologia , Análise Mutacional de DNA , Tolerância a Medicamentos , MutaçãoRESUMO
Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.
Assuntos
Biocombustíveis , Biomassa , Clostridium/genética , Clostridium/metabolismo , Genoma Bacteriano , Thermoanaerobacter/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Dados de Sequência MolecularRESUMO
Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an α-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.
Assuntos
Biocombustíveis , Parede Celular/genética , Glucuronosiltransferase/genética , Pectinas/biossíntese , Biomassa , Boro/metabolismo , Cálcio/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Produtos Agrícolas , Glucuronosiltransferase/química , Panicum/enzimologia , Panicum/genética , Pectinas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Populus/enzimologia , Populus/genética , Açúcares/metabolismoRESUMO
BACKGROUND: Clostridium thermocellum is capable of solubilizing and converting lignocellulosic biomass into ethanol. Although much of the work-to-date has centered on characterizing this microbe's growth on model cellulosic substrates, such as cellobiose, Avicel, or filter paper, it is vitally important to understand its metabolism on more complex, lignocellulosic substrates to identify relevant industrial bottlenecks that could undermine efficient biofuel production. To this end, we have examined a time course progression of C. thermocellum grown on switchgrass to assess the metabolic and protein changes that occur during the conversion of plant biomass to ethanol. RESULTS: The most striking feature of the metabolome was the observed accumulation of long-chain, branched fatty acids over time, implying an adaptive restructuring of C. thermocellum's cellular membrane as the culture progresses. This is undoubtedly a response to the gradual accumulation of lignocellulose-derived inhibitory compounds as the organism deconstructs the switchgrass to access the embedded cellulose. Corroborating the metabolomics data, proteomic analysis revealed a corresponding time-dependent increase in various enzymes, including those involved in the interconversion of branched amino acids valine, leucine, and isoleucine to iso- and anteiso-fatty acid precursors. Additionally, the metabolic accumulation of hemicellulose-derived sugars and sugar alcohols concomitant with increased abundance of enzymes involved in C5 sugar metabolism/pentose phosphate pathway indicates that C. thermocellum shifts glycolytic intermediates to alternate pathways to modulate overall carbon flux in response to C5 sugar metabolites that increase during lignocellulose deconstruction. CONCLUSIONS: Integrated omic platforms provided complementary systems biological information that highlight C. thermocellum's specific response to cytotoxic inhibitors released during the deconstruction and utilization of switchgrass. These additional viewpoints allowed us to fully realize the level to which the organism adapts to an increasingly challenging culture environment-information that will prove critical to C. thermocellum's industrial efficacy.
RESUMO
Cellulose is the most abundant renewable natural biological resource, and the production of biobased products and bioenergy from less costly renewable lignocellulosic materials is important for the sustainable development of human beings. A reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. Here, we review quantitative cellulase activity assays using soluble and insoluble substrates, and focus on their advantages and limitations. Because there are no clear relationships between cellulase activities on soluble substrates and those on insoluble substrates, soluble substrates should not be used to screen or select improved cellulases for processing relevant solid substrates, such as plant cell walls. Cellulase improvement strategies based on directed evolution using screening on soluble substrates have been only moderately successful, and have primarily targeted improvement in thermal tolerance. Heterogeneity of insoluble cellulose, unclear dynamic interactions between insoluble substrate and cellulase components, and the complex competitive and/or synergic relationship among cellulase components limit rational design and/or strategies, depending on activity screening approaches. Herein, we hypothesize that continuous culture using insoluble cellulosic substrates could be a powerful selection tool for enriching beneficial cellulase mutants from the large library displayed on the cell surface.
Assuntos
Celulase/metabolismo , Hidrólise , Especificidade por SubstratoRESUMO
BACKGROUND: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here, we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. RESULTS: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with the use of a proper blend of biomass degrading enzymes including inulinase that overcomes inhibition of most of the species tested. As an example, US grown Agave neomexicana produced 119 ± 11 mg ethanol/g biomass. Unlike yeast fermentations, Clostridium beijerinckii produced n-butanol plus acetone from all species tested. Butyric acid, a precursor of n-butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and polyfructose which are readily destroyed by acidic pretreatment, a two-step procedure was developed to depolymerize polyfructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii fermentations with selected Agave species with A. neomexicana producing 144 ± 4 mg fermentation products/g biomass. CONCLUSIONS: Results showed Agave's potential to be a source of fermentable sugars beyond the existing beverage species to now include many species previously unfermentable by yeast, including cold-tolerant lines. This development should stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.
RESUMO
Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.
Assuntos
Biocombustíveis/análise , Biomassa , Cymbopogon/química , Etanol/isolamento & purificação , Lignina/química , Óleos Voláteis/isolamento & purificação , Terpenos/isolamento & purificação , Bentonita , Biocombustíveis/economia , Parede Celular , Cromatografia Líquida de Alta Pressão , Cymbopogon/crescimento & desenvolvimento , Fermentação , Fertilizantes , Cromatografia Gasosa-Espectrometria de Massas , Nitratos , Óleos Voláteis/análise , Óleos Voláteis/economia , Panicum/química , Panicum/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Enxofre , Terpenos/análiseRESUMO
BACKGROUND: Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. A major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation. RESULTS: Here we present a set of genome-scale resources to enable the systems level investigation and development of this potentially important industrial organism. Resources include a complete genome sequence for strain JW/SL-YS485, a genome-scale reconstruction of metabolism, tiled microarray data showing transcription units, mRNA expression data from 71 different growth conditions or timepoints and GC/MS-based metabolite analysis data from 42 different conditions or timepoints. Growth conditions include hemicellulose hydrolysate, the inhibitors HMF, furfural, diamide, and ethanol, as well as high levels of cellulose, xylose, cellobiose or maltodextrin. The genome consists of a 2.7 Mbp chromosome and a 110 Kbp megaplasmid. An active prophage was also detected, and the expression levels of CRISPR genes were observed to increase in association with those of the phage. Hemicellulose hydrolysate elicited a response of carbohydrate transport and catabolism genes, as well as poorly characterized genes suggesting a redox challenge. In some conditions, a time series of combined transcription and metabolite measurements were made to allow careful study of microbial physiology under process conditions. As a demonstration of the potential utility of the metabolic reconstruction, the OptKnock algorithm was used to predict a set of gene knockouts that maximize growth-coupled ethanol production. The predictions validated intuitive strain designs and matched previous experimental results. CONCLUSION: These data will be a useful asset for efforts to develop T. saccharolyticum for efficient industrial production of biofuels. The resources presented herein may also be useful on a comparative basis for development of other lignocellulose degrading microbes, such as Clostridium thermocellum.
Assuntos
Genoma Bacteriano/genética , Genômica/métodos , Thermoanaerobacterium/genética , Sequência de Bases , Biocombustíveis/microbiologia , Furaldeído/análogos & derivados , Furaldeído/farmacologia , Indústrias , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Polissacarídeos/farmacologia , Thermoanaerobacterium/efeitos dos fármacos , Thermoanaerobacterium/crescimento & desenvolvimento , Thermoanaerobacterium/metabolismoRESUMO
An advanced pretreatment method that combines steam treatment (ST) with wet disk milling (WDM) was evaluated using two different species of woods, viz., Hinoki cypress (softwood) and Eucalyptus (hardwood). Bioconversion of the pretreated products was performed using enzymatic saccharification via a commercial cellulase mixture and two types of fermentation processing, i.e., yeast-based simultaneous saccharification and fermentation (SSF) and Clostridium thermocellum-based consolidated bioprocessing (CBP). A higher yield of glucose was obtained in the enzymatic saccharification and fermentation products from SSF and CBP with pretreatment consisting of WDM after ST, as compared to either ST or WDM alone. Maximum ethanol production via SSF and CBP were 359.3 and 79.4 mg/g-cellulose from Hinoki cypress, and 299.5 and 73.1 mg/g-cellulose from Eucalyptus, respectively. While the main fermentation product generated in CBP was acetate, the total products yield was 319.9 and 262.0 mg/g-cellulose from Hinoki cypress and Eucalyptus, respectively.
Assuntos
Biotecnologia/métodos , Metabolismo dos Carboidratos , Chamaecyparis/química , Eucalyptus/química , Fermentação , Vapor , Água/química , Biomassa , Celulase/metabolismo , Glucose/metabolismo , Fatores de TempoRESUMO
BACKGROUND: Switchgrass is an abundant and dedicated bioenergy feedstock, however its inherent recalcitrance is one of the economic hurdles for producing biofuels. The downregulation of the caffeic acid O-methyl transferase (COMT) gene in the lignin pathway of switchgrass reduced lignin content and S/G ratio, and the transgenic lines showed improved fermentation yield with Saccharomyces cerevisiae and wild-type Clostridium thermocellum (ATCC 27405) in comparison to the wild-type switchgrass. RESULTS: Here we examine the conversion and yield of the COMT transgenic and wild-type switchgrass lines with an engineered and evolved C. thermocellum (M1570) strain. The fermentation of the transgenic switchgrass by M1570 had superior conversion relative to the wild-type control switchgrass line with an increase in conversion of approximately 20% and ethanol being the primary product accounting for 90% of the total metabolites measured by HPLC analysis. CONCLUSIONS: The engineered and evolved C. thermocellum M1570 was found to respond to the apparent reduced recalcitrance of the COMT switchgrass with no substrate inhibition, producing more ethanol on the transgenic feedstock than the wild-type substrate. Since ethanol was the main fermentation metabolite produced by an engineered and evolved C. thermocellum strain, its ethanol yield on a transgenic switchgrass substrate (gram/gram (g/g) glucan liberated) is the highest produced thus far. This result indicates that the advantages of a modified feedstock can be combined with a modified consolidated bioprocessing microorganism as anticipated.
RESUMO
The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (µmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT.
Assuntos
Clostridium thermocellum/metabolismo , Fermentação , Populus/metabolismo , Hidrólise , CinéticaRESUMO
BACKGROUND: An industrially robust microorganism that can efficiently degrade and convert lignocellulosic biomass into ethanol and next-generation fuels is required to economically produce future sustainable liquid transportation fuels. The anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum is a candidate microorganism for such conversions but it, like many bacteria, is sensitive to potential toxic inhibitors developed in the liquid hydrolysate produced during biomass processing. Microbial processes leading to tolerance of these inhibitory compounds found in the pretreated biomass hydrolysate are likely complex and involve multiple genes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed a 17.5% v/v Populus hydrolysate tolerant mutant strain of C. thermocellum by directed evolution. The genome of the wild type strain, six intermediate population samples and seven single colony isolates were sequenced to elucidate the mechanism of tolerance. Analysis of the 224 putative mutations revealed 73 high confidence mutations. A longitudinal analysis of the intermediate population samples, a pan-genomic analysis of the isolates, and a hotspot analysis revealed 24 core genes common to all seven isolates and 8 hotspots. Genetic mutations were matched with the observed phenotype through comparison of RNA expression levels during fermentation by the wild type strain and mutant isolate 6 in various concentrations of Populus hydrolysate (0%, 10%, and 17.5% v/v). CONCLUSION/SIGNIFICANCE: The findings suggest that there are multiple mutations responsible for the Populus hydrolysate tolerant phenotype resulting in several simultaneous mechanisms of action, including increases in cellular repair, and altered energy metabolism. To date, this study provides the most comprehensive elucidation of the mechanism of tolerance to a pretreated biomass hydrolysate by C. thermocellum. These findings make important contributions to the development of industrially robust strains of consolidated bioprocessing microorganisms.
Assuntos
Clostridium thermocellum/genética , Clostridium thermocellum/fisiologia , Mutação , Populus/metabolismo , Dióxido de Carbono/metabolismo , Celulose/metabolismo , Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/crescimento & desenvolvimento , Fermentação/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genômica , Hidrogênio/metabolismo , Hidrólise , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
BACKGROUND: The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP) biocatalyst for cellulosic ethanol production. The aim of this study was to investigate C. thermocellum genes required to ferment biomass substrates and to conduct a robust comparison of DNA microarray and RNA sequencing (RNA-seq) analytical platforms. RESULTS: C. thermocellum ATCC 27405 fermentations were conducted with a 5 g/L solid substrate loading of either pretreated switchgrass or Populus. Quantitative saccharification and inductively coupled plasma emission spectroscopy (ICP-ES) for elemental analysis revealed composition differences between biomass substrates, which may have influenced growth and transcriptomic profiles. High quality RNA was prepared for C. thermocellum grown on solid substrates and transcriptome profiles were obtained for two time points during active growth (12 hours and 37 hours postinoculation). A comparison of two transcriptomic analytical techniques, microarray and RNA-seq, was performed and the data analyzed for statistical significance. Large expression differences for cellulosomal genes were not observed. We updated gene predictions for the strain and a small novel gene, Cthe_3383, with a putative AgrD peptide quorum sensing function was among the most highly expressed genes. RNA-seq data also supported different small regulatory RNA predictions over others. The DNA microarray gave a greater number (2,351) of significant genes relative to RNA-seq (280 genes when normalized by the kernel density mean of M component (KDMM) method) in an analysis of variance (ANOVA) testing method with a 5% false discovery rate (FDR). When a 2-fold difference in expression threshold was applied, 73 genes were significantly differentially expressed in common between the two techniques. Sulfate and phosphate uptake/utilization genes, along with genes for a putative efflux pump system were some of the most differentially regulated transcripts when profiles for C. thermocellum grown on either pretreated switchgrass or Populus were compared. CONCLUSIONS: Our results suggest that a high degree of agreement in differential gene expression measurements between transcriptomic platforms is possible, but choosing an appropriate normalization regime is essential.
RESUMO
BACKGROUND: Lignocellulosic biomass is one of the most promising renewable and clean energy resources to reduce greenhouse gas emissions and dependence on fossil fuels. However, the resistance to accessibility of sugars embedded in plant cell walls (so-called recalcitrance) is a major barrier to economically viable cellulosic ethanol production. A recent report from the US National Academy of Sciences indicated that, "absent technological breakthroughs", it was unlikely that the US would meet the congressionally mandated renewable fuel standard of 35 billion gallons of ethanol-equivalent biofuels plus 1 billion gallons of biodiesel by 2022. We here describe the properties of switchgrass (Panicum virgatum) biomass that has been genetically engineered to increase the cellulosic ethanol yield by more than 2-fold. RESULTS: We have increased the cellulosic ethanol yield from switchgrass by 2.6-fold through overexpression of the transcription factor PvMYB4. This strategy reduces carbon deposition into lignin and phenolic fermentation inhibitors while maintaining the availability of potentially fermentable soluble sugars and pectic polysaccharides. Detailed biomass characterization analyses revealed that the levels and nature of phenolic acids embedded in the cell-wall, the lignin content and polymer size, lignin internal linkage levels, linkages between lignin and xylans/pectins, and levels of wall-bound fucose are all altered in PvMYB4-OX lines. Genetically engineered PvMYB4-OX switchgrass therefore provides a novel system for further understanding cell wall recalcitrance. CONCLUSIONS: Our results have demonstrated that overexpression of PvMYB4, a general transcriptional repressor of the phenylpropanoid/lignin biosynthesis pathway, can lead to very high yield ethanol production through dramatic reduction of recalcitrance. MYB4-OX switchgrass is an excellent model system for understanding recalcitrance, and provides new germplasm for developing switchgrass cultivars as biomass feedstocks for biofuel production.