RESUMO
Sapovirus (SaV) is a member of the Caliciviridae family, which causes acute gastroenteritis in humans and animals. Human sapoviruses (HuSaVs) are genetically and antigenically diverse, but the lack of a viral replication system and structural information has hampered the development of vaccines and therapeutics. Here, we successfully produced a self-assembled virus-like particle (VLP) from the HuSaV GI.6 VP1 protein, and the first atomic structure was determined using single-particle cryo-electron microscopy (cryo-EM) at a 2.9-Å resolution. The atomic model of the VP1 protein revealed a unique capsid protein conformation in caliciviruses. All N-terminal arms in the A, B, and C subunits interacted with adjacent shell domains after extending through their subunits. The roof of the arched VP1 dimer was formed between the P2 subdomains by the interconnected ß strands and loops, and its buried surface was minimized compared to those of other caliciviruses. Four hypervariable regions that are potentially involved in the antigenic diversity of SaV formed extensive clusters on top of the P domain. Potential receptor binding regions implied by tissue culture mutants of porcine SaV were also located near these hypervariable clusters. Conserved sequence motifs of the VP1 protein, "PPG" and "GWS," may stabilize the inner capsid shell and the outer protruding domain, respectively. These findings will provide the structural basis for the medical treatment of HuSaV infections and facilitate the development of vaccines, antivirals, and diagnostic systems. IMPORTANCE SaV and norovirus, belonging to the Caliciviridae family, are common causes of acute gastroenteritis in humans and animals. SaV and norovirus infections are public health problems in all age groups, which occur explosively and sporadically worldwide. HuSaV is genetically and antigenically diverse and is currently classified into 4 genogroups consisting of 18 genotypes based on the sequence similarity of the VP1 proteins. Despite these detailed genetic analyses, the lack of structural information on viral capsids has become a problem for the development of vaccines or antiviral drugs. The 2.9-Å atomic model of the HuSaV GI.6 VLP presented here not only revealed the location of the amino acid residues involved in immune responses and potential receptor binding sites but also provided essential information for the design of stable constructs needed for the development of vaccines and antivirals.
Assuntos
Proteínas do Capsídeo , Capsídeo , Sapovirus , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Conformação Proteica , Sapovirus/ultraestrutura , SuínosRESUMO
Norovirus is the major cause of epidemic nonbacterial gastroenteritis worldwide. Lack of structural information on infection and replication mechanisms hampers the development of effective vaccines and remedies. Here, using cryo-electron microscopy, we show that the capsid structure of murine noroviruses changes in response to aqueous conditions. By twisting the flexible hinge connecting two domains, the protruding (P) domain reversibly rises off the shell (S) domain in solutions of higher pH, but rests on the S domain in solutions of lower pH. Metal ions help to stabilize the resting conformation in this process. Furthermore, in the resting conformation, the cellular receptor CD300lf is readily accessible, and thus infection efficiency is significantly enhanced. Two similar P domain conformations were also found simultaneously in the human norovirus GII.3 capsid, although the mechanism of the conformational change is not yet clear. These results provide new insights into the mechanisms of non-enveloped norovirus transmission that invades host cells, replicates, and sometimes escapes the hosts immune system, through dramatic environmental changes in the gastrointestinal tract.
Assuntos
Proteínas do Capsídeo/química , Norovirus/química , Domínios Proteicos , Animais , Linhagem Celular , Humanos , CamundongosRESUMO
Virus-like particles (VLPs) provide a well-established vaccine platform; however, the immunogenic properties acquired by VLP structure remain poorly understood. In this study, we showed that systemic vaccination with norovirus VLP recalls human IgA responses at higher magnitudes than IgG responses under a humanized mouse model that was established by introducing human PBMCs in severely immunodeficient mice. The recall responses elicited by VLP vaccines depended on VLP structure and the disruption of VLP attenuated recall responses, with a more profound reduction being observed in IgA responses. The IgA-focusing property was also conserved in a murine norovirus-primed model under which murine IgA responses were recalled in a manner dependent on VLP structure. Importantly, the VLP-driven IgA response preferentially targeted virus-neutralizing epitopes located in the receptor-binding domain. Consequently, VLP-driven IgA responses were qualitatively superior to IgG responses in terms of the virus-neutralizing activity in vitro. Furthermore, the IgA in mucosa obtained remarkable protective function toward orally administrated virus in vivo. Thus, our results indicate the immune-focusing properties of the VLP vaccine that improve the quality/quantity of mucosal IgA responses, a finding with important implications for developing mucosal vaccines.
Assuntos
Anticorpos Antivirais/imunologia , Imunoglobulina A/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Infecções por Caliciviridae/prevenção & controle , Humanos , Imunidade nas Mucosas , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Imunoglobulina G/imunologia , Memória Imunológica , Camundongos , Camundongos Transgênicos , Norovirus/imunologiaRESUMO
Norovirus is the leading cause of acute gastroenteritis worldwide. Since the discovery of human norovirus (HuNoV), an efficient and reproducible norovirus replication system has not been established in cultured cells. Although limited amounts of virus particles can be produced when the HuNoV genome is directly transfected into cells, the HuNoV cycle of infection has not been successfully reproduced in any currently available cell-culture system. Those results imply that the identification of a functional cell-surface receptor for norovirus might be the key to establishing a norovirus culture system. Using a genome-wide CRISPR/Cas9 guide RNA library, we identified murine CD300lf and CD300ld as functional receptors for murine norovirus (MNV). The treatment of susceptible cells with polyclonal antibody against CD300lf significantly reduced the production of viral progeny. Additionally, ectopic CD300lf expression in nonsusceptible cell lines derived from other animal species enabled MNV infection and progeny production, suggesting that CD300lf has potential for dictating MNV host tropism. Furthermore, CD300ld, which has an amino acid sequence in the N-terminal region of its extracellular domain that is highly homologous to that of CD300lf, also functions as a receptor for MNV. Our results indicate that direct interaction of MNV with two cell-surface molecules, CD300lf and CD300ld, dictates permissive noroviral infection.
Assuntos
Interações Hospedeiro-Patógeno/genética , Norovirus/fisiologia , Receptores Imunológicos/genética , Receptores Virais/genética , Sequência de Aminoácidos , Animais , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Células Cultivadas , Suscetibilidade a Doenças , Expressão Gênica , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , Tropismo Viral , Ligação ViralRESUMO
Human noroviruses (NoVs) are a major cause of epidemic and sporadic acute gastroenteritis worldwide. Public and personal hygiene is one of the most important countermeasures for preventing spread of NoV infection. However, no a practicable cell culture system for NoV had been developed, initial tests of the virucidal effectiveness of anti-NoV disinfectants and sanitizers have been performed using surrogate viruses. In this study, NoV virus-like particles (VLPs) were used as a new surrogate for NoVs and a method for evaluating NoV inactivation using them developed. This method is based on morphological changes in VLPs after treatment with sodium hypochlorite. VLP specimens were found to become deformed and degraded in a concentration-dependent manner. Based on these results, the effects of sodium hypochlorite on VLPs were classified into four phases according to morphological changes and number of particles. Using the criteria thus established, the efficacy of ethanol, carbonates and alkali solutions against VLPs was evaluated. Deformation and aggregation of VLPs were observed after treatment with these disinfectants under specific conditions. To determine the degradation mechanism(s), VLPs were examined by SDS-PAGE and immunoblotting after treatment with sodium hypochlorite and ethanol. The band corresponding to the major capsid protein, VP1, was not detected after treatment with sodium hypochlorite at concentrations greater than 500 ppm, but remained after treatment with ethanol. These results suggest that VLPs have excellent potential as a surrogate marker for NoVs and can be used in initial virucidal effectiveness tests to determine the mechanism(s) of chemical agents on NoVs.
Assuntos
Desinfetantes/farmacologia , Norovirus/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Aglutinação/efeitos dos fármacos , Capsídeo/efeitos dos fármacos , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Etanol/farmacologia , Humanos , Norovirus/ultraestrutura , Hipoclorito de Sódio/farmacologiaRESUMO
Human noroviruses are genetically and antigenically highly divergent. Monoclonal antibodies raised in mice against one kind of norovirus virus-like particle (VLP), however, were found to have broad recognition. In this study, we present the crystal structure of the antigen-binding fragment (Fab) for one of these broadly reactive monoclonal antibodies, 5B18, in complex with the capsid-protruding domain from a genogroup II genotype 10 (GII.10) norovirus at 3.3-Å resolution and, also, the cryo-electron microscopy structure of the GII.10 VLP at â¼10-Å resolution. The GII.10 VLP structure was more similar in overall architecture to the GV.1 murine norovirus virion than to the prototype GI.1 human norovirus VLP, with the GII.10 protruding domain raised â¼15 Å off the shell domain and rotated â¼40° relative to the GI.1 protruding domain. In the crystal structure, the 5B18 Fab bound to a highly conserved region of the protruding domain. Based on the VLP structure, this region is involved in interactions with other regions of the capsid and is buried in the virus particle. Despite the occluded nature of the recognized epitope in the VLP structure, enzyme-linked immunosorbent assay (ELISA) binding suggested that the 5B18 antibody was able to capture intact VLPs. Together, the results provide evidence that the norovirus particle is capable of extreme conformational flexibility, which may allow for antibody recognition of conserved surfaces that would otherwise be buried on intact particles.
Assuntos
Anticorpos Monoclonais/análise , Anticorpos Antivirais/análise , Norovirus/química , Norovirus/genética , Proteínas Virais/química , Vírion/química , Vírion/genética , Sequência de Aminoácidos , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Dados de Sequência Molecular , Norovirus/isolamento & purificação , Norovirus/metabolismo , Alinhamento de Sequência , Proteínas Virais/metabolismo , Vírion/isolamento & purificação , Vírion/metabolismoRESUMO
PURPOSE: We developed a novel echoendoscope that enables contrast harmonic imaging using ultrasound contrast agents and performed contrast-enhanced harmonic endosonography (EUS) both in vitro and in vivo. METHODS: An experimental convex-array echoendoscope equipped with a wideband transducer and a specific mode for contrast harmonic imaging was used. A Doppler phantom model was employed in in vitro experiments to determine the optimal mechanical indices for contrast harmonic imaging by the echoendoscope. In the in vivo experiments, the echoendoscope was inserted into the stomachs of dogs. The digestive organs were observed after intravenous infusion of a contrast agent, Definity, using contrast-enhanced harmonic EUS. Two patients, one with pancreatic carcinoma and one with a gastrointestinal stromal tumor (GIST), underwent contrast-enhanced harmonic EUS. RESULTS: In vitro experiments revealed that the optimal mechanical indices were 0.35-0.40 for intermittent imaging and 0.30 or less for real-time imaging. In the in vivo experiments, branching vessels and subsequent homogeneous distribution of the signal in the pancreatic tissue were observed. During clinical application, typical vascular patterns were observed in pancreatic carcinoma and a GIST. CONCLUSION: Contrast-enhanced harmonic EUS visualized parenchymal perfusion and the fine vascular structure in digestive organs and should be a useful and powerful method for clinical investigations.
RESUMO
Flap endonuclease 1 (FEN1) is a structure-specific nuclease involved in DNA replication and repair. The mouse Fen1 gene, which has two exons, is located immediately adjacent to the gene corresponding to full-length cDNA of Riken 1810006K21 (1810006K21Rik) in a head-to-head orientation. Transcription initiation sites of each gene are 274 bp apart in the mouse genome. The spacer sequence between the bidirectional genes contains a CpG island, but lacks the typical TATA box. In the present study, transcription of the mFen1 gene was started from two initiation sites, and the first noncoding exon was spliced to the second exon using two different splicing donor sites, producing 3 kinds of mFen1 transcripts. A 594-bp fragment between the mFen1 and 1810006K21Rik genes, which contains two conserved sequence blocks (CSB) between mouse and human sequence, functions as a bidirectional promoter. The multiple cis-elements, including an Ets-binding site and E-box in the CSB, are involved in activation or repression of transcription in both directions. Interestingly, the E-box activates mFen1 transcription and simultaneously represses promoter activity in the opposite direction. Mutation of either splicing donor site of the mFen1 gene produced limiting alternative splicing products, but did not affect luciferase activity. In contrast, the splicing-defective mutation produced by disruption of the acceptor site completely lacked luciferase activity, indicating that the splicing has a significant effect on production of luciferase protein by shortening the 5'-untranslated region of the mRNA.
Assuntos
Processamento Alternativo/genética , Endonucleases Flap/genética , Regulação da Expressão Gênica/genética , Elementos de Resposta/genética , TATA Box/genética , Transcrição Gênica/fisiologia , Regiões 5' não Traduzidas/genética , Animais , Ilhas de CpG/genética , Éxons/genética , Genoma , Humanos , Camundongos , Mutação , Sítios de Splice de RNA/genéticaRESUMO
Norwalk virus (NoV) is responsible for most outbreaks of non-bacterial gastroenteritis. NoV is genetically diverse and show antigenically variable. Recently, we produced a monoclonal antibody called 5B-18 that reacts broadly with NoV genogroup II (GII). We suspected the 5B-18 binds to a conformational epitope on 3D structure of virion. X-ray crystallography showed us that 5B-18 binds to NoV at the P domain, which protrudes from the capsid surface of the virion. However, there seems to be no space that would allow the IgG to approach the virion. To solve this problem, we used cryo-electron microscopy to examine NoV GII virus-like particles (VLPs). The P domain rises up higher in NoV GII than in NoV GI, and it seems to form an outer layer around the virion. Finally, using in silico modeling we found the 5B-18 Fab arms and NoV P region are quite flexible, so that 5B-18 can bind the NoV virion from bottom of P domain. This study demonstrates the shortcomings of studying biological phenomenon by only one technique. Each method has limitations. Multiple methods and modeling in silico are the keys to solving structural problems.