RESUMO
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by neuronal loss and gliosis, with oligodendroglial cytoplasmic inclusions (GCIs) containing α-synuclein being the primary pathological hallmark. Clinical presentations of MSA overlap with other parkinsonian disorders, such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP), posing challenges in early diagnosis. Numerous studies have reported alterations in DNA methylation in neurodegenerative diseases, with candidate loci being identified in various parkinsonian disorders including MSA, PD, and PSP. Although MSA and PSP present with substantial white matter pathology, alterations in white matter have also been reported in PD. However, studies comparing the DNA methylation architectures of white matter in these diseases are lacking. We therefore aimed to investigate genome-wide DNA methylation patterns in the frontal lobe white matter of individuals with MSA (n = 17), PD (n = 17), and PSP (n = 16) along with controls (n = 15) using the Illumina EPIC array, to identify shared and disease-specific DNA methylation alterations. Genome-wide DNA methylation profiling of frontal lobe white matter in the three parkinsonian disorders revealed substantial commonalities in DNA methylation alterations in MSA, PD, and PSP. We further used weighted gene correlation network analysis to identify disease-associated co-methylation signatures and identified dysregulation in processes relating to Wnt signaling, signal transduction, endoplasmic reticulum stress, mitochondrial processes, RNA interference, and endosomal transport to be shared between these parkinsonian disorders. Our overall analysis points toward more similarities in DNA methylation patterns between MSA and PD, both synucleinopathies, compared to that between MSA and PD with PSP, which is a tauopathy. Our results also highlight several shared DNA methylation changes and pathways indicative of converging molecular mechanisms in the white matter contributing toward neurodegeneration in all three parkinsonian disorders.
Assuntos
Metilação de DNA , Lobo Frontal , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Paralisia Supranuclear Progressiva , Substância Branca , Humanos , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Metilação de DNA/genética , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Substância Branca/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Idoso , Feminino , Masculino , Lobo Frontal/patologia , Lobo Frontal/metabolismo , Pessoa de Meia-Idade , Idoso de 80 Anos ou maisRESUMO
Cell-to-cell spreading of misfolded α-synuclein (αSYN) is supposed to play a key role in the pathological progression of Parkinson's disease (PD) and other synucleinopathies. Receptor-mediated endocytosis has been shown to contributes to the uptake of αSYN in both neuronal and glial cells. To determine the receptor involved in αSYN endocytosis on the cell surface, we performed unbiased, and comprehensive screening using a membrane protein library of the mouse whole brain combined with affinity chromatography and mass spectrometry. The candidate molecules hit in the initial screening were validated by co-immunoprecipitation using cultured cells; sortilin, a vacuolar protein sorting 10 protein family sorting receptor, exhibited the strongest binding to αSYN fibrils. Notably, the intracellular uptake of fibrillar αSYN was slightly but significantly altered, depending on the expression level of sortilin on the cell surface, and time-lapse image analyses revealed the concomitant internalization and endosomal sorting of αSYN fibrils and sortilin. Domain deletion in the extracellular portion of sortilin revealed that the ten conserved cysteines (10CC) segment of sortilin was involved in the binding and endocytosis of fibrillar αSYN; importantly, pretreatment with a 10CC domain-specific antibody significantly hindered αSYN fibril uptake. The presence of sortilin in the core structure of Lewy bodies and glial cytoplasmic inclusions in the brain of synucleinopathy patients was confirmed via immunohistochemistry, and the expression level of sortilin in mesencephalic dopaminergic neurons may be altered with disease progression. These results provide compelling evidence that sortilin acts as an endocytic receptor for pathogenic form of αSYN, and yields important insight for the development of disease-modifying targets for synucleinopathies.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Doença de Parkinson , Sinucleinopatias , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , alfa-Sinucleína/metabolismo , Proteínas de Transporte , Doença de Parkinson/metabolismoRESUMO
BACKGROUND: Bronchial epithelial cells are at the front line of viral infections. Toll-like receptor 3 (TLR3) cascade causes the expression of interferon (IFN)-ß and IFN-stimulated genes (ISGs), which in turn induce an antiviral response. Members of the transmembrane protein (TMEM) family are expressed in various cell types. Although the prognostic value of TMEM2 in various cancers has been reported, its association with infectious diseases remains unknown. In this study, we investigated the effects of TMEM2 on antiviral immunity in BEAS-2B bronchial epithelial cells. METHODS AND RESULTS: TMEM2 protein was found in the cytoplasm of normal human bronchial epithelial cells and differed between organs using immunohistochemistry. Cultured BEAS-2B cells were transfected with TMEM2 siRNA, followed by administration of TLR3 ligand polyinosinic-polycytidylic acid (poly IC) or recombinant human (r(h)) IFN-ß. The expression of TMEM2, IFN-ß, ISG56, C-X-C motif chemokine ligand 10 (CXCL10) and hyaluronan were evaluated appropriately by western blotting, quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. TMEM2 expression was not altered by poly IC stimulation. Knockdown of TMEM2 increased poly IC-induced expression of IFN-ß, CXCL10, and ISG56, while IFN-ß-induced expression of ISG56 and CXCL10 were not changed by TMEM2 knockdown. The hyaluronan concentration in the medium was decreased by either TMEM2 knockdown or poly IC, but additive or synergistic effects were not observed. CONCLUSIONS: TMEM2 knockdown enhanced TLR3-mediated IFN-ß, CXCL10, and ISG56 expression in BEAS-2B cells. This implies that TMEM2 suppresses antiviral immune responses and prevents tissue injury in bronchial epithelial cells.
Assuntos
Ácido Hialurônico , Receptor 3 Toll-Like , Humanos , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Ligantes , Poli I-C/farmacologia , Células Epiteliais/metabolismo , Células Cultivadas , Quimiocina CXCL10/genéticaRESUMO
Clinical diagnosis of progressive supranuclear palsy (PSP) is difficult due to various phenotypes. Neuropathologically, PSP is defined by neuronal loss in the basal ganglia and brainstem with widespread occurrence of neurofibrillary tangles (NFTs) and accumulation of phosphorylated tau protein in neurons and glial cells in the brain. We previously identified the point mutation p.Pro3866Ala in the Bassoon (BSN) gene in a Japanese family with PSP-like syndrome. We newly detected BSN mutations in two autopsied PSP cases carrying p.Thr2542Met and p.Glu2759Gly, respectively. The case with p.Thr2542Met mutation showed neurological symptoms including behavioral abnormalities, cognitive dysfunction, and parkinsonism. Brain magnetic resonance imaging (MRI) showed atrophy of the midbrain tegmentum and hippocampus. Pathologically, moderate to severe loss of neurons with gliosis was also found in the substantia nigra, and there was an almost complete loss of neurons with gliosis in the transitional zone of the cornu ammonis (CA) 1 region to the subiculum. NFTs were observed in the globus pallidus, subthalamic nucleus, substantia nigra, and CA1. 4R tau-dominant tauopathy was detected. The case with p.Glu2759Gly mutation showed neurological symptoms, including right-dominant motor impairment, right limping gait, postural instability, and cognitive dysfunction. Brain MRI showed mild atrophy of the midbrain tegmentum and left-dominant parietal lobe atrophy. Pathologically, NFTs were detected in the globus pallidus, subthalamic nucleus, substantia nigra, thalamus, putamen, and brainstem tegmentum. Most neurons were immunopositive for four-repeat tau, whereas only a few of them harbored three-repeat tau-positive NFTs in the hippocampus. We showed the results of a pathological study of PSP cases with BSN mutations; these were two new cases. The clinical phenotypes were similar to the first case in the point of neurological symptoms. Accumulation of four-repeat tau was dominant. Further autopsies of BSN mutation cases and further elucidation of the molecular biological mechanism are desirable.
RESUMO
AIMS: Epigenetic clocks are widely applied as surrogates for biological age in different tissues and/or diseases, including several neurodegenerative diseases. Despite white matter (WM) changes often being observed in neurodegenerative diseases, no study has investigated epigenetic ageing in white matter. METHODS: We analysed the performances of two DNA methylation-based clocks, DNAmClockMulti and DNAmClockCortical , in post-mortem WM tissue from multiple subcortical regions and the cerebellum, and in oligodendrocyte-enriched nuclei. We also examined epigenetic ageing in control and multiple system atrophy (MSA) (WM and mixed WM and grey matter), as MSA is a neurodegenerative disease comprising pronounced WM changes and α-synuclein aggregates in oligodendrocytes. RESULTS: Estimated DNA methylation (DNAm) ages showed strong correlations with chronological ages, even in WM (e.g., DNAmClockCortical , r = [0.80-0.97], p < 0.05). However, performances and DNAm age estimates differed between clocks and brain regions. DNAmClockMulti significantly underestimated ages in all cohorts except in the MSA prefrontal cortex mixed tissue, whereas DNAmClockCortical tended towards age overestimations. Pronounced age overestimations in the oligodendrocyte-enriched cohorts (e.g., oligodendrocyte-enriched nuclei, p = 6.1 × 10-5 ) suggested that this cell type ages faster. Indeed, significant positive correlations were observed between estimated oligodendrocyte proportions and DNAm age acceleration estimated by DNAmClockCortical (r > 0.31, p < 0.05), and similar trends were obtained with DNAmClockMulti . Although increased age acceleration was observed in MSA compared with controls, no significant differences were detected upon adjustment for possible confounders (e.g., cell-type proportions). CONCLUSIONS: Our findings show that oligodendrocyte proportions positively influence epigenetic age acceleration across brain regions and highlight the need to further investigate this in ageing and neurodegeneration.
Assuntos
Atrofia de Múltiplos Sistemas , Humanos , Atrofia de Múltiplos Sistemas/metabolismo , Encéfalo/metabolismo , Substância Cinzenta/metabolismo , Oligodendroglia/metabolismo , Metilação de DNA , Epigênese GenéticaRESUMO
Dysregulation of autophagy, one of the major processes through which abnormal proteins are degraded, is a cardinal feature of synucleinopathies, including Lewy body diseases [Parkinson's disease (PD) and dementia with Lewy bodies (DLB)] and multiple system atrophy (MSA), which are characterized by the presence of abnormal α-synuclein in neurons and glial cells. Although several research groups have reported that Rubicon family proteins can regulate autophagosome-lysosome fusion or positioning, little is known about their involvement in synucleinopathies. In the present study, by studying patients with PD (N = 8), DLB (N = 13), and MSA (N = 5) and controls (N = 16), we explored the involvement of Rubicon family proteins [Rubicon, Pacer and differentially expressed in FDCP8 (DEF8)] in synucleinopathies. Immunohistochemical analysis showed that not only brainstem-type Lewy bodies but also cortical Lewy bodies were immunoreactive for DEF8 in Lewy body diseases, whereas Rubicon and Pacer were detectable in only a few brainstem-type Lewy bodies in PD. Glial cytoplasmic inclusions in patients with MSA were not immunoreactive for Rubicon, Pacer or DEF8. Immunoblotting showed significantly increased protein levels of DEF8 in the substantia nigra and putamen of patients with PD and the temporal cortex of patients with DLB. In addition, the smear band of DEF8 appeared in the insoluble fraction where that of phosphorylated α-synuclein was detected. These findings indicate the involvement of DEF8 in the formation of Lewy bodies. Quantitative and qualitative alterations in DEF8 may reflect the dysregulation of autophagy in Lewy body diseases.
Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Autofagia , Encéfalo/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismoRESUMO
AIMS: Synaptic dysfunction in Parkinson's disease is caused by propagation of pathogenic α-synuclein between neurons. Previously, in multiple system atrophy (MSA), pathologically characterised by ectopic deposition of abnormal α-synuclein predominantly in oligodendrocytes, we demonstrated that the occurrence of memory impairment was associated with the number of α-synuclein-positive neuronal cytoplasmic inclusions (NCIs) in the hippocampus. In the present study, we aimed to investigate how abnormal α-synuclein in the hippocampus can lead to memory impairment. METHODS: We performed pathological and biochemical analyses using a mouse model of adult-onset MSA and human cases (MSA, N = 25; Parkinson's disease, N = 3; Alzheimer's disease, N = 2; normal controls, N = 11). In addition, the MSA model mice were examined behaviourally and physiologically. RESULTS: In the MSA model, inducible human α-synuclein was first expressed in oligodendrocytes and subsequently accumulated in the cytoplasm of excitatory hippocampal neurons (NCI-like structures) and their presynaptic nerve terminals with the development of memory impairment. α-Synuclein oligomers increased simultaneously in the hippocampus of the MSA model. Hippocampal dendritic spines also decreased in number, followed by suppression of long-term potentiation. Consistent with these findings obtained in the MSA model, post-mortem analysis of human MSA brain tissues showed that cases of MSA with memory impairment developed more NCIs in excitatory hippocampal neurons along with α-synuclein oligomers than those without. CONCLUSIONS: Our results provide new insights into the role of α-synuclein oligomers as a possible pathological cause of memory impairment in MSA.
Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/metabolismo , Doença de Parkinson/patologia , Corpos de Inclusão/patologia , Neurônios/patologia , Encéfalo/patologiaRESUMO
BACKGROUND: The second consensus criteria for the diagnosis of multiple system atrophy (MSA) are widely recognized as the reference standard for clinical research, but lack sensitivity to diagnose the disease at early stages. OBJECTIVE: To develop novel Movement Disorder Society (MDS) criteria for MSA diagnosis using an evidence-based and consensus-based methodology. METHODS: We identified shortcomings of the second consensus criteria for MSA diagnosis and conducted a systematic literature review to answer predefined questions on clinical presentation and diagnostic tools relevant for MSA diagnosis. The criteria were developed and later optimized using two Delphi rounds within the MSA Criteria Revision Task Force, a survey for MDS membership, and a virtual Consensus Conference. RESULTS: The criteria for neuropathologically established MSA remain unchanged. For a clinical MSA diagnosis a new category of clinically established MSA is introduced, aiming for maximum specificity with acceptable sensitivity. A category of clinically probable MSA is defined to enhance sensitivity while maintaining specificity. A research category of possible prodromal MSA is designed to capture patients in the earliest stages when symptoms and signs are present, but do not meet the threshold for clinically established or clinically probable MSA. Brain magnetic resonance imaging markers suggestive of MSA are required for the diagnosis of clinically established MSA. The number of research biomarkers that support all clinical diagnostic categories will likely grow. CONCLUSIONS: This set of MDS MSA diagnostic criteria aims at improving the diagnostic accuracy, particularly in early disease stages. It requires validation in a prospective clinical and a clinicopathological study. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Atrofia de Múltiplos Sistemas , Encéfalo/patologia , Consenso , Humanos , Imageamento por Ressonância Magnética , Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/patologia , Estudos ProspectivosRESUMO
Multiple system atrophy (MSA) is a fatal disease characterized pathologically by the widespread occurrence of aggregated α-synuclein in the oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). α-Synuclein aggregates are also found in the oligodendroglial nuclei and neuronal cytoplasm and nuclei. It is uncertain whether the primary source of α-synuclein in GCIs is originated from neurons or oligodendrocytes. Accumulating evidence suggests that there are two degenerative processes in this disease. One possibility is that numerous GCIs are associated with the impairment of oligo-myelin-axon-neuron complex, and the other is that neuronal inclusion pathology is also a primary event from the early stage. Both oligodendrocytes and neurons may be primarily affected in MSA, and the damage of one cell type contributes to the degeneration of the other. Vesicle-mediated transport plays a key role in the nuclear translocation of α-synuclein as well as in the formation of glial and neuronal α-synuclein inclusions. Recent studies have shown that impairment of autophagy can occur along with or as a result of α-synuclein accumulation in the brain of MSA and Lewy body disease. Activated autophagy may be implicated in the therapeutic approach for α-synucleinopathies.
RESUMO
BACKGROUND: Neurological symptoms and radiographic abnormalities may remain in a small proportion of patients with metronidazole-induced encephalopathy (MIE). Although experimental animal models of MIE have suggested a Wernicke's encephalopathy-like pathology, little is known about the histopathological features of MIE. Here we report the first autopsy case of irreversible MIE. CASE PRESENTATION: A 72-year-old Japanese woman with pancreatic neuroendocrine tumour and metastatic tumours in the liver developed intraabdominal bleeding from a hepatic abscess. She was administered metronidazole for 79 days (1.5 g/day), which caused dysarthria followed by hand tremor and altered mental status. Brain magnetic resonance imaging at the time of onset revealed hyperintensities in the deep white matter of the bilateral parietal lobes and splenium of the corpus callosum on diffusion-weighted imaging (DWI) with reduced apparent diffusion coefficient (ADC) values. Despite the improvement of dysarthria and hand tremor, her cognition remained affected even after the withdrawal of metronidazole. She died of pancreatic neuroendocrine tumour at the age of 74 years. Histopathological examinations of the brain confirmed a combination of severe demyelination and moderate axonal degeneration, which corresponded to the regions showing abnormal signal intensities on DWI with reduced ADC values. There were no pathological findings suggestive of Wernicke's encephalopathy in the brain. CONCLUSION: We have demonstrated the clinical, radiographic and histopathological aspects of irreversible MIE. Hyperintensities on DWI with reduced ADC values in affected regions may indicate a poor clinical prognosis due to irreversible pathological damage.
Assuntos
Encefalopatias , Neoplasias Pancreáticas , Encefalopatia de Wernicke , Feminino , Humanos , Metronidazol/efeitos adversos , Encefalopatia de Wernicke/patologia , Disartria , Autopsia , Tremor , Encefalopatias/induzido quimicamente , Encefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodosRESUMO
We studied a subset of patients with autopsy-confirmed multiple system atrophy who presented a clinical picture that closely resembled either Parkinson's disease or progressive supranuclear palsy. These mimics are not captured by the current diagnostic criteria for multiple system atrophy. Among 218 autopsy-proven multiple system atrophy cases reviewed, 177 (81.2%) were clinically diagnosed and pathologically confirmed as multiple system atrophy (i.e. typical cases), while the remaining 41 (18.8%) had received an alternative clinical diagnosis, including Parkinson's disease (i.e. Parkinson's disease mimics; n = 16) and progressive supranuclear palsy (i.e. progressive supranuclear palsy mimics; n = 17). We also reviewed the clinical records of another 105 patients with pathologically confirmed Parkinson's disease or progressive supranuclear palsy, who had received a correct final clinical diagnosis (i.e. Parkinson's disease, n = 35; progressive supranuclear palsy-Richardson syndrome, n = 35; and progressive supranuclear palsy-parkinsonism, n = 35). We investigated 12 red flag features that would support a diagnosis of multiple system atrophy according to the current diagnostic criteria. Compared with typical multiple system atrophy, Parkinson's disease mimics more frequently had a good levodopa response and visual hallucinations. Vertical gaze palsy and apraxia of eyelid opening were more commonly observed in progressive supranuclear palsy mimics. Multiple logistic regression analysis revealed an increased likelihood of having multiple system atrophy [Parkinson's disease mimic versus typical Parkinson's disease, odds ratio (OR): 8.1; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 2.3] if a patient developed any one of seven selected red flag features in the first 10 years of disease. Severe autonomic dysfunction (orthostatic hypotension and/or urinary incontinence with the need for a urinary catheter) was more frequent in clinically atypical multiple system atrophy than other parkinsonian disorders (Parkinson's disease mimic versus typical Parkinson's disease, OR: 4.1; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 8.8). The atypical multiple system atrophy cases more frequently had autonomic dysfunction within 3 years of symptom onset than the pathologically confirmed patients with Parkinson's disease or progressive supranuclear palsy (Parkinson's disease mimic versus typical Parkinson's disease, OR: 4.7; progressive supranuclear palsy mimic versus typical progressive supranuclear palsy, OR: 2.7). Using all included clinical features and 21 early clinical features within 3 years of symptom onset, we developed decision tree algorithms with combinations of clinical pointers to differentiate clinically atypical cases of multiple system atrophy from Parkinson's disease or progressive supranuclear palsy.
Assuntos
Atrofia de Múltiplos Sistemas/diagnóstico , Doença de Parkinson/diagnóstico , Paralisia Supranuclear Progressiva/diagnóstico , Idoso , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , Paralisia Supranuclear Progressiva/patologiaRESUMO
BACKGROUND: Earlier administration of intravenous recombinant tissue-type plasminogen activator (rtPA) and mechanical thrombectomy (MT) improves the neurological prognosis of patients with acute ischemic stroke (AIS). We introduced a new protocol that includes head and chest computed tomography (CT) and magnetic resonance imaging (MRI)/ magnetic resonance angiography (MRA) for all patients, which is quite different from previously evaluated protocols. This study aimed to examine whether this protocol could contribute to the prompt therapeutic intervention of AIS. METHODS: This is a retrospective observational study analyzing patients with AIS who were transported to our hospital by ambulance between January 2015 and November 2021. An AIS initial treatment protocol was introduced in April 2020, under which, CT and MRI/MRA imaging were performed in all patients, and the indication for rtPA and MT were determined. The participants were divided into those who were treated before and after the protocol introduction (conventional treatment and protocol groups, respectively). The time from hospital arrival to the start of rtPA administration (door-to-needle time: DNT) and the time from hospital arrival to the start of endovascular treatment (door-to-puncture time: DPT) were compared between the groups. RESULT: A total of 121 patients were analyzed, wherein 63 patients received rtPA (18 in the conventional treatment group and 45 in the protocol group) and 98 patients received MT (32 in the conventional treatment group and 66 in the protocol group). The median DNT was 97.0 (IQR 49.0-138.0) min vs. 56.5 (IQR 41.0-72.0) min (p < 0.001) for the conventional treatment and the protocol groups, respectively. The median DPT was 129.0 (IQR 62.0-196.0) min vs. 55.0 (IQR 40.5-69.5) min (p < 0.001), respectively. Moreover, DNT was achieved within 60 min in 5.6% vs. 69.9% (p < 0.001) and DPT within 90 min in 25.0% vs. 85.7% (p < 0.001), respectively. CONCLUSION: The introduction of a protocol, including CT/MRI imaging, significantly shortened DNT and DPT.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/terapia , Protocolos Clínicos , Fibrinolíticos , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Estudos Observacionais como Assunto , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual , Tomografia Computadorizada por Raios X , Resultado do TratamentoRESUMO
In typical adult neuronal intranuclear inclusion disease (NIID) with predilection for the basal ganglia or cerebral cortex, not only neurons but also glial cells harbor intranuclear inclusions. In addition, these inclusions are present in the peripheral autonomic nervous system, visceral organs and skin. In NIID cases with an expansion of GGC repeats in the 5'-untranslated region (5'-UTR) of the Notch 2 N-terminal like C (NOTCH2NLC) gene, these repeats are located in an upstream open reading frame (uN2C) and result in the production of a polyglycine-containing protein called uN2CpolyG. Typically, patients with adult NIID show high-intensity signals at the corticomedullary junction on diffusion-weighted brain magnetic resonance imaging. We report a case of adult NIID in a 78-year-old Japanese male, who suffered from mild, non-progressive tremor during life but showed no radiographic abnormalities suggestive of adult NIID. Pathologically, ubiquitin-, p62- and uN2CpolyG-positive neuronal intranuclear inclusions were particularly frequent in the hippocampal formation, but were also seen in the enteric plexuses, kidney and cardiac muscles. By contrast, glial intranuclear inclusions were barely evident in the affected regions. The present case also had an immunohistochemical profile differing from that of typical adult NIID. The findings in this case suggest that adult NIID can show clinical, radiographic and pathological heterogeneity.
Assuntos
Corpos de Inclusão Intranuclear , Doenças Neurodegenerativas , Adulto , Idoso , Encéfalo/patologia , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Masculino , Doenças Neurodegenerativas/metabolismo , NeuropatologiaRESUMO
AIMS: Multiple system atrophy (MSA) is a fatal neurodegenerative disease. Similar to Parkinson's disease (PD), MSA is an α-synucleinopathy, and its pathological hallmark consists of glial cytoplasmic inclusions (GCIs) containing α-synuclein (SNCA) in oligodendrocytes. We previously identified consistent changes in myelin-associated oligodendrocyte basic protein (MOBP) and huntingtin interacting protein 1 (HIP1) DNA methylation status in MSA. We hypothesized that if differential DNA methylation at these loci is mechanistically relevant for MSA, it should have downstream consequences on gene regulation. METHODS: We investigated the relationship between MOBP and HIP1 DNA methylation and mRNA levels in cerebellar white matter from MSA and healthy controls. Additionally, we analysed protein expression using western blotting, immunohistochemistry and proximity ligation assays. RESULTS: We found decreased MOBP mRNA levels significantly correlated with increased DNA methylation in MSA. For HIP1, we found a distinct relationship between DNA methylation and gene expression levels in MSA compared to healthy controls, suggesting this locus may be subjected to epigenetic remodelling in MSA. Although soluble protein levels for MOBP and HIP1 in cerebellar white matter were not significantly different between MSA cases and controls, we found striking differences between MSA and other neurodegenerative diseases, including PD and Huntington's disease. We also found that MOBP and HIP1 are mislocalized into the GCIs in MSA, where they appear to interact with SNCA. CONCLUSIONS: This study supports a role for DNA methylation in downregulation of MOBP mRNA in MSA. Most importantly, the identification of MOBP and HIP1 as new constituents of GCIs emphasizes the relevance of these two loci to the pathogenesis of MSA.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Proteínas da Mielina/metabolismo , Neuroglia/patologia , alfa-Sinucleína/metabolismo , Humanos , Corpos de Inclusão/patologia , Atrofia de Múltiplos Sistemas/metabolismo , Proteínas da Mielina/genética , Neuroglia/metabolismo , Oligodendroglia/patologia , Doença de Parkinson/patologia , Substância Branca/patologiaRESUMO
Recent post-mortem studies reported 22-37% of patients with multiple system atrophy can develop cognitive impairment. With the aim of identifying associations between cognitive impairment including memory impairment and α-synuclein pathology, 148 consecutive patients with pathologically proven multiple system atrophy were reviewed. Among them, 118 (79.7%) were reported to have had normal cognition in life, whereas the remaining 30 (20.3%) developed cognitive impairment. Twelve of them had pure frontal-subcortical dysfunction, defined as the presence of executive dysfunction, impaired processing speed, personality change, disinhibition or stereotypy; six had pure memory impairment; and 12 had both types of impairment. Semi-quantitative analysis of neuronal cytoplasmic inclusions in the hippocampus and parahippocampus revealed a disease duration-related increase in neuronal cytoplasmic inclusions in the dentate gyrus and cornu ammonis regions 1 and 2 of patients with normal cognition. In contrast, such a correlation with disease duration was not found in patients with cognitive impairment. Compared to the patients with normal cognition, patients with memory impairment (pure memory impairment: n = 6; memory impairment + frontal-subcortical dysfunction: n = 12) had more neuronal cytoplasmic inclusions in the dentate gyrus, cornu ammonis regions 1-4 and entorhinal cortex. In the multiple system atrophy mixed pathological subgroup, which equally affects the striatonigral and olivopontocerebellar systems, patients with the same combination of memory impairment developed more neuronal inclusions in the dentate gyrus, cornu ammonis regions 1, 2 and 4, and the subiculum compared to patients with normal cognition. Using patients with normal cognition (n = 18), frontal-subcortical dysfunction (n = 12) and memory impairment + frontal-subcortical dysfunction (n = 18), we further investigated whether neuronal or glial cytoplasmic inclusions in the prefrontal, temporal and cingulate cortices or the underlying white matter might affect cognitive impairment in patients with multiple system atrophy. We also examined topographic correlates of frontal-subcortical dysfunction with other clinical symptoms. Although no differences in neuronal or glial cytoplasmic inclusions were identified between the groups in the regions examined, frontal release signs were found more commonly when patients developed frontal-subcortical dysfunction, indicating the involvement of the frontal-subcortical circuit in the pathogenesis of frontal-subcortical dysfunction. Here, investigating cognitive impairment in the largest number of pathologically proven multiple system atrophy cases described to date, we provide evidence that neuronal cytoplasmic inclusion burden in the hippocampus and parahippocampus is associated with the occurrence of memory impairment in multiple system atrophy. Further investigation is necessary to identify the underlying pathological basis of frontal-subcortical dysfunction in multiple system atrophy.
Assuntos
Hipocampo/metabolismo , Atrofia de Múltiplos Sistemas/fisiopatologia , alfa-Sinucleína/metabolismo , Adulto , Idoso , Secreções Corporais/metabolismo , Encéfalo/patologia , Cognição/fisiologia , Disfunção Cognitiva/etiologia , Demência/complicações , Feminino , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/fisiologia , Masculino , Memória , Transtornos da Memória/complicações , Pessoa de Meia-Idade , Neurônios/metabolismoRESUMO
Leptomeningeal myelomatosis (LMM) is a fatal complication that occurs in < 1% of patients with multiple myeloma. Many patients with LMM present with neurologic symptoms referable to cranial neuropathies, while the manifestation of communicating hydrocephalus has been underrecognized. A Japanese man with Bence Jones protein-κ multiple myeloma developed fever and headache at age 54 years. He then became somnolent and went into a coma. Neuroimaging analyses identified rapidly progressive communicating hydrocephalus due to meningitis. He died 83 days after the onset of headache without any response to treatment at age 55 years. No symptoms or signs associated with cranial nerves were found during the course of illness. Postmortem examination revealed hydrocephalus and diffuse infiltration of myeloma cells into the subarachnoid space of the cerebrum, cerebellum, and brainstem. In addition, the interstitial tissue of the choroid plexuses was filled with myeloma cells. These myeloma cells were positive for CD156 and light chain κ. The Ki-67 labeling index in myeloma cells of the central nervous system (CNS) was 30-40%. Histopathological examination further revealed many myeloma cells on the surface of the lateral, third and fourth ventricles and at the area postrema of the medulla oblongata. Patients with LMM can develop an aggressive form of communicating hydrocephalus. Given that cerebrospinal fluid, produced by epithelial cells in the choroid plexuses of the ventricles, passes into the subarachnoid space through the third and fourth ventricles, myeloma cells may invade the CNS through the choroid plexuses.
Assuntos
Hidrocefalia , Mieloma Múltiplo/complicações , Mieloma Múltiplo/patologia , Autopsia , Proteína de Bence Jones/urina , Humanos , Hidrocefalia/diagnóstico , Hidrocefalia/etiologia , Hidrocefalia/patologia , Masculino , Neoplasias Meníngeas , Meninges/patologia , Pessoa de Meia-Idade , NeuroimagemRESUMO
Multiple system atrophy (MSA) is a fatal late-onset neurodegenerative disease. Although presenting with distinct pathological hallmarks, which in MSA consist of glial cytoplasmic inclusions (GCIs) containing fibrillar α-synuclein in oligodendrocytes, both MSA and Parkinson's disease are α-synucleinopathies. Pathologically, MSA can be categorized into striatonigral degeneration (SND), olivopontocerebellar atrophy (OPCA) or mixed subtypes. Despite extensive research, the regional vulnerability of the brain to MSA pathology remains poorly understood. Genetic, epigenetic and environmental factors have been proposed to explain which brain regions are affected by MSA, and to what extent. Here, we explored for the first time epigenetic changes in post-mortem brain tissue from MSA cases. We conducted a case-control study, and profiled DNA methylation in white mater from three brain regions characterized by severe-to-mild GCIs burden in the MSA mixed subtype (cerebellum, frontal lobe and occipital lobe). Our genome-wide approach using Illumina MethylationEPIC arrays and a powerful cross-region analysis identified 157 CpG sites and 79 genomic regions where DNA methylation was significantly altered in the MSA mixed-subtype cases. HIP1, LMAN2 and MOBP were amongst the most differentially methylated loci. We replicated these findings in an independent cohort and further demonstrated that DNA methylation profiles were perturbed in MSA mixed subtype, and also to variable degrees in the other pathological subtypes (OPCA and SND). Finally, our co-methylation network analysis revealed several molecular signatures (modules) significantly associated with MSA (disease status and pathological subtypes), and with neurodegeneration in the cerebellum. Importantly, the co-methylation module having the strongest association with MSA included a CpG in SNCA, the gene encoding α-synuclein. Altogether, our results provide the first evidence for DNA methylation changes contributing to the molecular processes altered in MSA, some of which are shared with other neurodegenerative diseases, and highlight potential novel routes for diagnosis and therapeutic interventions.
Assuntos
Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Lectinas de Ligação a Manose/genética , Proteínas de Membrana Transportadoras/genética , Atrofia de Múltiplos Sistemas/genética , Proteínas da Mielina/genética , Idoso , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/patologia , Substância Branca/metabolismo , Substância Branca/patologia , alfa-Sinucleína/genéticaRESUMO
The neuropathological hallmarks of Parkinson's disease (PD) include the appearance of α-synuclein (α-SYN)-positive Lewy bodies (LBs) and the loss of catecholaminergic neurons. Thus, a potential mechanism promoting the uptake of extracellular α-SYN may exist in susceptible neurons. Of the various differentially expressed proteins, we are interested in flotillin (FLOT)-1 because this protein is highly expressed in the brainstem catecholaminergic neurons and is strikingly up-regulated in PD brains. In this study, we found that extracellular monomeric and fibrillar α-SYN can potentiate FLOT1-dopamine transporter (DAT) binding and pre-endocytic clustering of DAT on the cell surface, thereby facilitating DAT endocytosis and down-regulating its transporter activity. Moreover, we demonstrated that α-SYN itself exploited the DAT endocytic process to enter dopaminergic neuron-like cells, and both FLOT1 and DAT were found to be the components of LBs. Altogether, these findings revealed a novel role of extracellular α-SYN on cellular trafficking of DAT and may provide a rationale for the cell type-specific, functional, and pathologic alterations in PD.-Kobayashi, J., Hasegawa, T., Sugeno, N., Yoshida, S., Akiyama, T., Fujimori, K., Hatakeyama, H., Miki, Y., Tomiyama, A., Kawata, Y., Fukuda, M., Kawahata, I., Yamakuni, T., Ezura, M., Kikuchi, A., Baba, T., Takeda, A., Kanzaki, M., Wakabayashi, K., Okano, H., Aoki, M. Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis.
Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Corpos de Lewy/patologia , Proteínas de Membrana/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Membrana Celular/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Endocitose , Humanos , Corpos de Lewy/metabolismo , Proteínas de Membrana/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transporte Proteico , alfa-Sinucleína/genéticaRESUMO
Clinical diagnosis of multiple system atrophy is challenging and many patients with Lewy body disease (i.e. Parkinson's disease or dementia with Lewy bodies) or progressive supranuclear palsy are misdiagnosed as having multiple system atrophy in life. The clinical records of 203 patients with a clinical diagnosis of multiple system atrophy were reviewed to identify diagnostic pitfalls. We also examined 12 features supporting a diagnosis of multiple system atrophy (red flag features: orofacial dystonia, disproportionate antecollis, camptocormia and/or Pisa syndrome, contractures of hands or feet, inspiratory sighs, severe dysphonia, severe dysarthria, snoring, cold hands and feet, pathological laughter and crying, jerky myoclonic postural/action tremor and polyminimyoclonus) and seven disability milestones (frequent falls, use of urinary catheters, wheelchair dependent, unintelligible speech, cognitive impairment, severe dysphagia, residential care). Of 203 cases, 160 (78.8%) were correctly diagnosed in life and had pathologically confirmed multiple system atrophy. The remaining 21.2% (43/203) had alternative pathological diagnoses including Lewy body disease (12.8%; n = 26), progressive supranuclear palsy (6.4%; n = 13), cerebrovascular diseases (1%; n = 2), amyotrophic lateral sclerosis (0.5%; n = 1) and cerebellar degeneration (0.5%; n = 1). More patients with multiple system atrophy developed ataxia, stridor, dysphagia and falls than patients with Lewy body disease; resting tremor, pill-rolling tremor and hallucinations were more frequent in Lewy body disease. Although patients with multiple system atrophy and progressive supranuclear palsy shared several symptoms and signs, ataxia and stridor were more common in multiple system atrophy. Multiple logistic regression analysis revealed increased likelihood of multiple system atrophy versus Lewy body disease and progressive supranuclear palsy if a patient developed orthostatic hypotension or urinary incontinence with the requirement for urinary catheters [multiple system atrophy versus Lewy body disease: odds ratio (OR): 2.0, 95% confidence interval (CI): 1.1-3.7, P = 0.021; multiple system atrophy versus progressive supranuclear palsy: OR: 11.2, 95% CI: 3.2-39.2, P < 0.01]. Furthermore, autonomic dysfunction within the first 3 years from onset can differentiate multiple system atrophy from progressive supranuclear palsy (multiple system atrophy versus progressive supranuclear palsy: OR: 3.4, 95% CI: 1.2-9.7, P = 0.023). Multiple system atrophy patients with predominant parkinsonian signs had a higher number of red flag features than patients with Lewy body disease (OR: 8.8, 95% CI: 3.2-24.2, P < 0.01) and progressive supranuclear palsy (OR: 4.8, 95% CI: 1.7-13.6, P < 0.01). The number of red flag features in multiple system atrophy with predominant cerebellar signs was also higher than in Lewy body disease (OR: 7.0, 95% CI: 2.5-19.5, P < 0.01) and progressive supranuclear palsy (OR: 3.1, 95% CI: 1.1-8.9, P = 0.032). Patients with multiple system atrophy had shorter latency to reach use of urinary catheter and longer latency to residential care than progressive supranuclear palsy patients, whereas patients with Lewy body disease took longer to reach multiple milestones than patients with multiple system atrophy. The present study has highlighted features which should improve the ante-mortem diagnostic accuracy of multiple system atrophy.
Assuntos
Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Feminino , Humanos , Doença por Corpos de Lewy/diagnóstico , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/fisiopatologia , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/diagnóstico , Estudos Retrospectivos , Paralisia Supranuclear Progressiva/diagnóstico , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/fisiopatologia , Bancos de Tecidos/normasRESUMO
BACKGROUND: Although the quick Sequential Organ Failure Assessment (qSOFA) has been recommended for identifying patients at higher risk of hospital death, it has only a 60% sensitivity for in-hospital mortality. On the other hand, hypothermia associates with increased mortality and organ failure in patients with sepsis. This study aimed to assess the predictive validity of qSOFA for identifying patients with sepsis at higher risk of multiple organ dysfunction or death and the complementary effect of hypothermia. METHODS: Patients with severe sepsis admitted to intensive care units (ICUs) were retrospectively analyzed. The predictive validities of qSOFA (≥2, positive) and the complementary effect of hypothermia (body temperature ≤36.5°C) for the identification of death or multiorgan dysfunction were evaluated. RESULTS: Of the 624 patients, 230 (36.9%) developed multiorgan dysfunction and 144 (23.1%) died within 28 days; 527 (84.5%) had a positive qSOFA. The 28-day mortality rates of patients with positive and negative qSOFA were 25.4% and 10.3%, respectively (P = .001). The rate of positive qSOFA was higher in patients with multiorgan dysfunction (sensitivity, 0.896; specificity, 0.185) and among patients who died within 28 days (sensitivity, 0.931; specificity, 0.181); 10 (6.9%) of 144 deaths were not identified. In cases of positive qSOFA without hypothermia, positive qSOFA + hypothermia, or negative qSOFA with hypothermia, the predictive value for 28-day mortality improved (sensitivity, 0.979). Among the 144 patients who died, only 3 were not identified. CONCLUSION: A qSOFA score ≥2 may identify >90% of 28-day deaths among patients with severe sepsis; hypothermia may complement the predictive ability of qSOFA.