Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mov Disord ; 35(12): 2261-2269, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979290

RESUMO

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) is a widely used treatment for Parkinson's disease (PD) patients with motor complications, but can result in adverse effects (AEs) in a significant proportion of treated patients. The use of novel programming features including short pulse width (PW) and directional steering in alleviating stimulation-induced AEs has not been explored. OBJECTIVE: To determine if programming with short PW, directional steering, or the combination of these novel techniques can improve stimulation-induced dysarthria, dyskinesia, and pyramidal AEs. METHODS: Thirty-two consecutive PD patients who experienced reversible AEs of STN-DBS had optimization of their settings using either short PW, directional steering, or the combination, while ensuring equivalent control of motor symptoms. Pairwise comparisons of pre- and post-optimization adverse effect ratings were made. Patients were left on the alternative setting with the greatest benefit and followed up at 6 months. Modeling of volume of tissue activated (VTA) and charge per pulse (Qp) calculations were used to explore potential underlying mechanisms of any differences found. RESULTS: There were significant improvements in stimulation-induced dysarthria, dyskinesia, and pyramidal side effects after optimization. At 6 months, mean AE ratings remained significantly improved compared to pre-optimization ratings. Different patterns of shift in VTA for each AE, and Qp could be used to explain improvements using novel techniques. CONCLUSIONS: Stimulation-induced dysarthria, dyskinesia, and pyramidal AEs induced by STN-DBS can be improved by using novel programming techniques. These represent additional tools to conventional methods that can be used to address these AEs. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Discinesias , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Resultado do Tratamento
2.
Mov Disord ; 35(1): 101-108, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571270

RESUMO

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective therapy for selected Parkinson's disease patients with motor fluctuations, but can adversely affect speech and axial symptoms. The use of short pulse width (PW) has been shown to expand the therapeutic window acutely, but its utility in reducing side effects in chronic STN-DBS patients has not been evaluated. OBJECTIVE: To compare the effect of short PW settings using 30-µs with conventional 60-µs settings on stimulation-induced dysarthria in Parkinson's disease patients with previously implanted STN-DBS systems. METHODS: In this single-center, double-blind, randomized crossover trial, we assigned 16 Parkinson's disease patients who had been on STN-DBS for a mean of 6.5 years and exhibited moderate dysarthria to 30-µs or 60-µs settings for 4 weeks followed by the alternative PW setting for a further 4 weeks. The primary outcome was difference in dysarthric speech measured by the Sentence Intelligibility Test between study baseline and the 2 PW conditions. Secondary outcomes included motor, nonmotor, and quality of life measures. RESULTS: There was no difference in the Sentence Intelligibility Test scores between baseline and the 2 treatment conditions (P = 0.25). There were also no differences noted in motor, nonmotor, or quality of life scores. The 30-µs settings were well tolerated, and adverse event rates were similar to those at conventional PW settings. Post hoc analysis indicated that patients with dysarthria and a shorter duration of DBS may be improved by short PW stimulation. CONCLUSIONS: Short PW settings using 30 µs did not alter dysarthric speech in chronic STN-DBS patients. A future study should evaluate whether patients with shorter duration of DBS may be helped by short PW settings. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiopatologia , Resultado do Tratamento , Idoso , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida
3.
NPJ Parkinsons Dis ; 9(1): 10, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707523

RESUMO

Parkinson's disease (PD) is a common neurological disorder, with bradykinesia being one of its cardinal features. Objective quantification of bradykinesia using computer vision has the potential to standardise decision-making, for patient treatment and clinical trials, while facilitating remote assessment. We utilised a dataset of part-3 MDS-UPDRS motor assessments, collected at four independent clinical and one research sites on two continents, to build computer-vision-based models capable of inferring the correct severity rating robustly and consistently across all identifiable subgroups of patients. These results contrast with previous work limited by small sample sizes and small numbers of sites. Our bradykinesia estimation corresponded well with clinician ratings (interclass correlation 0.74). This agreement was consistent across four clinical sites. This result demonstrates how such technology can be successfully deployed into existing clinical workflows, with consumer-grade smartphone or tablet devices, adding minimal equipment cost and time.

4.
J Parkinsons Dis ; 12(7): 2223-2233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155530

RESUMO

BACKGROUND: Parkinson's disease severity is typically measured using the Movement Disorder Society Unified Parkinson's disease rating scale (MDS-UPDRS). While training for this scale exists, users may vary in how they score a patient with the consequence of intra-rater and inter-rater variability. OBJECTIVE: In this study we explored the consistency of an artificial intelligence platform compared with traditional clinical scoring in the assessment of motor severity in PD. METHODS: Twenty-two PD patients underwent simultaneous MDS-UPDRS scoring by two experienced MDS-UPDRS raters and the two sets of accompanying video footage were also scored by an artificial intelligence video analysis platform known as KELVIN. RESULTS: KELVIN was able to produce a summary score for 7 MDS-UPDRS part 3 items with good inter-rater reliability (Intraclass Correlation Coefficient (ICC) 0.80 in the OFF-medication state, ICC 0.73 in the ON-medication state). Clinician scores had exceptionally high levels of inter-rater reliability in both the OFF (0.99) and ON (0.94) medication conditions (possibly reflecting the highly experienced team). There was an ICC of 0.84 in the OFF-medication state and 0.31 in the ON-medication state between the mean Clinician and mean Kelvin scores for the equivalent 7 motor items, possibly due to dyskinesia impacting on the KELVIN scores. CONCLUSION: We conclude that KELVIN may prove useful in the capture and scoring of multiple items of MDS-UPDRS part 3 with levels of consistency not far short of that achieved by experienced MDS-UPDRS clinical raters, and is worthy of further investigation.


Assuntos
Doença de Parkinson , Inteligência Artificial , Avaliação da Deficiência , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
5.
J Neurosurg ; : 1-10, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36308483

RESUMO

OBJECTIVE: Suboptimal lead placement is one of the most common indications for deep brain stimulation (DBS) revision procedures. Confirming lead placement in relation to the visible anatomical target with dedicated stereotactic imaging before terminating the procedure can mitigate this risk. In this study, the authors examined the accuracy, precision, and safety of intraoperative MRI (iMRI) to both guide and verify lead placement during frame-based stereotactic surgery. METHODS: A retrospective analysis of 650 consecutive DBS procedures for targeting accuracy, precision, and perioperative complications was performed. Frame-based lead placement took place in an operating room equipped with an MRI machine using stereotactic images to verify lead placement before removing the stereotactic frame. Immediate lead relocation was performed when necessary. Systematic analysis of the targeting error was calculated. RESULTS: Verification of 1201 DBS leads with stereotactic MRI was performed in 643 procedures and with stereotactic CT in 7. The mean ± SD of the final targeting error was 0.9 ± 0.3 mm (range 0.1-2.3 mm). Anatomically acceptable lead placement was achieved with a single brain pass for 97% (n = 1164) of leads; immediate intraoperative relocation was performed in 37 leads (3%) to obtain satisfactory anatomical placement. General anesthesia was used in 91% (n = 593) of the procedures. Hemorrhage was noted after 4 procedures (0.6%); 3 patients (0.4% of procedures) presented with transient neurological symptoms, and 1 experienced delayed cognitive decline. Two bleeds coincided with immediate relocation (2 of 37 leads, 5.4%), which contrasts with hemorrhage in 2 (0.2%) of 1164 leads implanted on the first pass (p = 0.0058). Three patients had transient seizures in the postoperative period. The seizures coincided with hemorrhage in 2 of these patients and with immediate lead relocation in the other. There were 21 infections (3.2% of procedures, 1.5% in 3 months) leading to hardware removal. Delayed (> 3 months) retargeting of 6 leads (0.5%) in 4 patients (0.6% of procedures) was performed because of suboptimal stimulation benefit. There were no MRI-related complications, no permanent motor deficits, and no deaths. CONCLUSIONS: To the authors' knowledge, this is the largest series reporting the use of iMRI to guide and verify lead location during DBS surgery. It demonstrates a high level of accuracy, precision, and safety. Significantly higher hemorrhage was encountered when multiple brain passes were required for lead implantation, although none led to permanent deficit. Meticulous audit and calibration can improve precision and maximize safety.

6.
Parkinsonism Relat Disord ; 69: 14-18, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31648149

RESUMO

INTRODUCTION: In a double-blind randomized crossover trial, we previously established that bilateral deep brain stimulation of the anteromedial globus pallidus internus (GPiam-DBS) is effective in significantly reducing tic severity in patients with refractory Tourette syndrome (TS). Here, we report the effects of bilateral GPiam-DBS on cognitive function in 11 of the 13 patients who had participated in our double-blind cross-over trial of GPi-DBS. METHODS: Patients were assessed at baseline (4 weeks prior to surgery) and at the end of each of the three-month blinded periods, with stimulation either ON or OFF. The patients were evaluated on tests of memory (California Verbal Learning Test-II (CVLT-II); Corsi blocks; Short Recognition Memory for Faces), executive function (D-KEFS Stroop color-word interference, verbal fluency, Trail-making test, Hayling Sentence Completion test), and attention (Paced Auditory Serial Addition Test, Numbers and Letters Test). RESULTS: GPiam-DBS did not produce any significant change in global cognition. Relative to pre-operative baseline assessment verbal episodic memory on the CVLT-II and set-shifting on the Trail-making Test were improved with DBS OFF. Performance on the cognitive tests were not different with DBS ON versus DBS OFF. GPiam-DBS did not alter aspects of cognition that are impaired in TS such as inhibition on the Stroop interference task or the Hayling Sentence Completion test. CONCLUSIONS: This study extends previous findings providing data showing that GPiam-DBS does not adversely affect cognitive domains such as memory, executive function, verbal fluency, attention, psychomotor speed, and information processing. These results indicate that GPiam-DBS does not produce any cognitive deficits in TS.


Assuntos
Cognição , Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiologia , Síndrome de Tourette/terapia , Adulto , Estudos Cross-Over , Estimulação Encefálica Profunda/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
J Neurosurg ; 126(4): 1165-1172, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27315022

RESUMO

OBJECTIVE Infection of deep brain stimulation (DBS) hardware has a significant impact on patient morbidity. Previous experience suggests that infection rates appear to be higher after implantable pulse generator (IPG) replacement surgery than after the de novo DBS procedure. In this study the authors examine the effect of a change in practice during DBS IPG replacements at their institution. METHODS Starting in January 2012, patient screening for methicillin-resistant Staphylococcus aureus (MRSA) and, and where necessary, eradication was performed prior to elective DBS IPG change. Moreover, topical vancomycin was placed in the IPG pocket during surgery. The authors then prospectively examined the infection rate in patients undergoing DBS IPG replacement at their center over a 3-year period with at least 9 months of follow-up. RESULTS The total incidence of infection in this prospective consecutive series of 101 IPG replacement procedures was 0%, with a mean follow-up duration of 24 ± 11 months. This was significantly lower than the authors' previously published historical control group, prior to implementing the change in practice, where the infection rate for IPG replacement was 8.5% (8/94 procedures; p = 0.003). CONCLUSIONS This study suggests that a change in clinical practice can significantly lower infection rates in patients undergoing DBS IPG replacement. These simple measures can minimize unnecessary surgery, loss of benefit from chronic stimulation, and costly hardware replacement, further improving the cost efficacy of DBS therapies.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Neuroestimuladores Implantáveis , Controle de Infecções , Complicações Pós-Operatórias/prevenção & controle , Administração Tópica , Adulto , Antibacterianos/uso terapêutico , Feminino , Seguimentos , Humanos , Controle de Infecções/métodos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pessoa de Meia-Idade , Estudos Prospectivos , Reoperação , Estudos Retrospectivos , Infecções Estafilocócicas/prevenção & controle , Vancomicina/uso terapêutico
10.
Lancet Neurol ; 14(6): 595-605, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25882029

RESUMO

BACKGROUND: Deep brain stimulation (DBS) has been proposed as a treatment option for severe Tourette's syndrome on the basis of findings from open-label series and small double-blind trials. We aimed to further assess the safety and efficacy of bilateral globus pallidus internus (GPi) DBS in patient's with severe Tourette's syndrome. METHODS: In a randomised, double-blind, crossover trial, we recruited eligible patients (severe medically refractory Tourette's syndrome, age ≥20 years) from two clinics for tertiary movement disorders in the UK. Enrolled patients received surgery for GPi DBS and then were randomly assigned in a 1:1 ratio (computer-generated pairwise randomisation according to order of enrolment) to receive either stimulation on-first or stimulation off-first for 3 months, followed by a switch to the opposite condition for a further 3 month period. Patients and rating clinicians were masked to treatment allocation; an unmasked clinician was responsible for programming the stimulation. The primary endpoint was difference in Yale Global Tic Severity Scale (YGTSS) total score between the two blinded conditions, assessed with repeated measures ANOVA, in all patients who completed assessments during both blinded periods. After the end of the blinded crossover phase, all patients were offered continued DBS and continued to have open-label stimulation adjustments and objective assessments of tic severity until database lock 1 month after the final patient's final trial-related visit. This trial is registered with ClinicalTrials.gov, number NCT01647269. FINDINGS: Between Nov 5, 2009, and Oct 16, 2013, we enrolled 15 patients (11 men, four women; mean age 34·7 years [SD 10·0]). 14 patients were randomly assigned and 13 completed assessments in both blinded periods (seven in the on-first group, six in the off-first group). Mean YGTSS total score in these 13 patients was 87·9 (SD 9·2) at baseline, 80·7 (SD 12·0) for the off-stimulation period, and 68·3 (SD 18·6) for the on-stimulation period. Pairwise comparisons in YGTSS total scores after Bonferroni correction were significantly lower at the end of the on-stimulation period compared with the off-stimulation period, with a mean improvement of 12·4 points (95% CI 0·1-24·7, p=0·048), equivalent to a difference of 15·3% (95% CI 5·3-25·3). All 15 patients received stimulation in the open-label phase. Overall, three serious adverse events occurred (two infections in DBS hardware at 2 and 7 weeks postoperatively, and one episode of deep-brain-stimulation-induced hypomania during the blinded on-stimulation period); all three resolved with treatment. INTERPRETATION: GPi stimulation led to a significant improvement in tic severity, with an overall acceptable safety profile. Future research should concentrate on identifying the most effective target for DBS to control both tics and associated comorbidities, and further clarify factors that predict individual patient response. FUNDING: UK National Health Service.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiologia , Síndrome de Tourette/terapia , Adulto , Estudos Cross-Over , Estimulação Encefálica Profunda/efeitos adversos , Método Duplo-Cego , Feminino , Globo Pálido/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA