Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 34(7): 1027-1035, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38951026

RESUMO

mRNA-based vaccines and therapeutics are gaining popularity and usage across a wide range of conditions. One of the critical issues when designing such mRNAs is sequence optimization. Even small proteins or peptides can be encoded by an enormously large number of mRNAs. The actual mRNA sequence can have a large impact on several properties, including expression, stability, immunogenicity, and more. To enable the selection of an optimal sequence, we developed CodonBERT, a large language model (LLM) for mRNAs. Unlike prior models, CodonBERT uses codons as inputs, which enables it to learn better representations. CodonBERT was trained using more than 10 million mRNA sequences from a diverse set of organisms. The resulting model captures important biological concepts. CodonBERT can also be extended to perform prediction tasks for various mRNA properties. CodonBERT outperforms previous mRNA prediction methods, including on a new flu vaccine data set.


Assuntos
RNA Mensageiro , Vacinas de mRNA , Humanos , RNA Mensageiro/genética , Códon , Algoritmos
2.
Methods Mol Biol ; 2726: 209-234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38780733

RESUMO

Computational prediction of RNA-RNA interactions (RRI) is a central methodology for the specific investigation of inter-molecular RNA interactions and regulatory effects of non-coding RNAs like eukaryotic microRNAs or prokaryotic small RNAs. Available methods can be classified according to their underlying prediction strategies, each implicating specific capabilities and restrictions often not transparent to the non-expert user. Within this work, we review seven classes of RRI prediction strategies and discuss the advantages and limitations of respective tools, since such knowledge is essential for selecting the right tool in the first place.Among the RRI prediction strategies, accessibility-based approaches have been shown to provide the most reliable predictions. Here, we describe how IntaRNA, as one of the state-of-the-art accessibility-based tools, can be applied in various use cases for the task of computational RRI prediction. Detailed hands-on examples for individual RRI predictions as well as large-scale target prediction scenarios are provided. We illustrate the flexibility and capabilities of IntaRNA through the examples. Each example is designed using real-life data from the literature and is accompanied by instructions on interpreting the respective results from IntaRNA output. Our use-case driven instructions enable non-expert users to comprehensively understand and utilize IntaRNA's features for effective RRI predictions.


Assuntos
Biologia Computacional , Software , Biologia Computacional/métodos , RNA/genética , RNA/metabolismo , Algoritmos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
3.
NAR Genom Bioinform ; 6(3): lqae089, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39131818

RESUMO

RNA secondary structures play essential roles in the formation of the tertiary structure and function of a transcript. Recent genome-wide studies highlight significant potential for RNA structures in the mammalian genome. However, a major challenge is assigning functional roles to these structured RNAs. In this study, we conduct a guilt-by-association analysis of clusters of computationally predicted conserved RNA structure (CRSs) in human untranslated regions (UTRs) to associate them with gene functions. We filtered a broad pool of ∼500 000 human CRSs for UTR overlap, resulting in 4734 and 24 754 CRSs from the 5' and 3' UTR of protein-coding genes, respectively. We separately clustered these CRSs for both sets using RNAscClust, obtaining 793 and 2403 clusters, each containing an average of five CRSs per cluster. We identified overrepresented binding sites for 60 and 43 RNA-binding proteins co-localizing with the clustered CRSs. Furthermore, 104 and 441 clusters from the 5' and 3' UTRs, respectively, showed enrichment for various Gene Ontologies, including biological processes such as 'signal transduction', 'nervous system development', molecular functions like 'transferase activity' and the cellular components such as 'synapse' among others. Our study shows that significant functional insights can be gained by clustering RNA structures based on their structural characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA