Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 3112, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080216

RESUMO

Plants may benefit from limiting the community of generalist floral visitors if the species that remain are more effective pollinators and less effective pollenivores. Plants can reduce access to pollen through altered floral cues or morphological structures, but can also reduce consumption through direct pollen defenses. We observed that Eucera (Peponapis) pruinosa, a specialist bee on Cucurbita plants, collected pure loads of pollen while generalist honey bees and bumble bees collected negligible amounts of cucurbit pollen, even though all groups of bees visited these flowers. Cucurbit flowers have no morphological adaptations to limit pollen collection by bees, thus we assessed their potential for physical, nutritional, and chemical pollen traits that might act as defenses to limit pollen loss to generalist pollinators. Bumble bee (Bombus impatiens) microcolonies experienced reduced pollen consumption, mortality, and reproduction as well as increased stress responses when exposed to nutritional and mechanical pollen defenses. These bees also experienced physiological effects of these defenses in the form of hindgut expansion and gut melanization. Chemical defenses alone increased the area of gut melanization in larger bees and induced possible compensatory feeding. Together, these results suggest that generalist bumble bees avoid collecting cucurbit pollen due to the physiological costs of physical and chemical pollen defenses.


Assuntos
Comportamento Apetitivo , Abelhas/fisiologia , Defesa das Plantas contra Herbivoria , Pólen , Polinização , Animais , Abelhas/classificação , Comportamento Animal , Cucurbita , Feminino , Flores/anatomia & histologia , New York
2.
Ecology ; 100(4): e02621, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30667044

RESUMO

Floral chemistry mediates plant interactions with herbivores, pathogens, and pollinators. The chemistry of floral nectar and pollen, the primary food rewards for pollinators, can affect both plant reproduction and pollinator health. Although the existence and functional significance of nectar and pollen secondary metabolites has long been known, comprehensive quantitative characterizations of secondary chemistry exist for only a few species. Moreover, little is known about intraspecific variation in nectar and pollen chemical profiles. Because the ecological effects of secondary chemicals are dose-dependent, heterogeneity across genotypes and populations could influence floral trait evolution and pollinator foraging ecology. To better understand within- and across-species heterogeneity in nectar and pollen secondary chemistry, we undertook exhaustive LC-MS and LC-UV-based chemical characterizations of nectar and pollen methanol extracts from 31 cultivated and wild plant species. Nectar and pollen were collected from farms and natural areas in Massachusetts, Vermont, and California, USA, in 2013 and 2014. For wild species, we aimed to collect 10 samples from each of three sites. For agricultural and horticultural species, we aimed for 10 samples from each of three cultivars. Our data set (1,535 samples, 102 identified compounds) identifies and quantifies each compound recorded in methanolic extracts, and includes chemical metadata that describe the molecular mass, retention time, and chemical classification of each compound. A reference phylogeny is included for comparative analyses. We found that each species possessed a distinct chemical profile; moreover, within species, few compounds were found in both nectar and pollen. The most common secondary chemical classes were flavonoids, terpenoids, alkaloids and amines, and chlorogenic acids. The most common compounds were quercetin and kaempferol glycosides. Pollens contained high concentrations of hydroxycinnamoyl-spermidine conjugates, mainly triscoumaroyl and trisferuloyl spermidine, found in 71% of species. When present, pollen alkaloids and spermidines had median nonzero concentrations of 23,000 µmol/L (median 52% of recorded micromolar composition). Although secondary chemistry was qualitatively consistent within each species and sample type, we found significant quantitative heterogeneity across cultivars and sites. These data provide a standard reference for future ecological and evolutionary research on nectar and pollen secondary chemistry, including its role in pollinator health and plant reproduction. Data are published under a Creative Commons Attribution License (CC BY 3.0 US) and may be freely used if properly cited.

3.
Sci Rep ; 7: 46554, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422139

RESUMO

Honey bees provide critical pollination services for many agricultural crops. While the contribution of pesticides to current hive loss rates is debated, remarkably little is known regarding the magnitude of risk to bees and mechanisms of exposure during pollination. Here, we show that pesticide risk in recently accumulated beebread was above regulatory agency levels of concern for acute or chronic exposure at 5 and 22 of the 30 apple orchards, respectively, where we placed 120 experimental hives. Landscape context strongly predicted focal crop pollen foraging and total pesticide residues, which were dominated by fungicides. Yet focal crop pollen foraging was a poor predictor of pesticide risk, which was driven primarily by insecticides. Instead, risk was positively related to diversity of non-focal crop pollen sources. Furthermore, over 60% of pesticide risk was attributed to pesticides that were not sprayed during the apple bloom period. These results suggest the majority of pesticide risk to honey bees providing pollination services came from residues in non-focal crop pollen, likely contaminated wildflowers or other sources. We suggest a greater understanding of the specific mechanisms of non-focal crop pesticide exposure is essential for minimizing risk to bees and improving the sustainability of grower pest management programs.


Assuntos
Abelhas/fisiologia , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Inseticidas/efeitos adversos , Malus/crescimento & desenvolvimento , Praguicidas/efeitos adversos , Pólen , Polinização , Animais , Inseticidas/farmacologia , Praguicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA