Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr Biochem ; 73: 108224, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31654895

RESUMO

The identification of natural bioactive compounds aimed at promoting optimal gut health and improving lipid metabolism is paramount in the prevention of chronic disease. In this review, we summarize basic science and clinical research examining the protective properties of milk sphingomyelin (SM) against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. Dietary SM dose-dependently reduces the intestinal absorption of cholesterol, triglycerides, and fatty acids in cell culture and rodent studies. Overall, rodent feeding studies show dietary milk SM, milk polar lipid mixtures, and milk fat globule membrane reduce serum and hepatic lipid concentrations. Furthermore, these hypolipidemic effects are observed in some supplementation studies in humans, although the extent of reductions in serum cholesterol is typically smaller and only one trial was conducted with purified SM. Dietary milk SM has been reported to affect the gut microbiota in rodent studies and its hydrolytic product, sphingosine, displays bactericidal activity in vitro. Milk SM may also improve gut barrier function to prevent the translocation of inflammatory gut bacteria-derived molecules. Current evidence from pre-clinical studies indicates that dietary milk SM has protective properties against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. The hypolipidemic effects of milk SM observed in animal studies have been reported in some human studies, although the magnitude of such effects is typically smaller. More research is warranted to clearly define how dietary milk SM influences lipid metabolism, gut microbiota, and inflammation in humans.


Assuntos
Disbiose/prevenção & controle , Inflamação/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Leite/química , Esfingomielinas/administração & dosagem , Animais , Colesterol na Dieta/farmacocinética , Dieta , Dieta Ocidental , Gorduras na Dieta/farmacocinética , Digestão/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Absorção Intestinal/efeitos dos fármacos , Lipídeos/análise , Lipídeos/sangue , Fígado/química , Fígado/efeitos dos fármacos , Esfingomielinas/farmacocinética
2.
J Nutr Biochem ; 65: 128-138, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30685581

RESUMO

Milk polar lipids (MPL) are specifically rich in milk sphingomyelin (MSM) which represents 24% of MPL. Beneficial effects of MPL or MSM have been reported on lipid metabolism, but information on gut physiology is scarce. Here we assessed whether MPL and MSM can impact tight junction expression. Human epithelial intestinal Caco-2/TC7 cells were incubated with mixed lipid micelles devoid of MSM (Control) or with 0.2 or 0.4 mM of MSM via pure MSM or via total MPL. C57Bl/6 mice received 5 or 10 mg of MSM via MSM or via MPL (oral gavage); small intestinal segments were collected after 4 h. Impacts on tight junction and cytokine expressions were assessed by qPCR; IL-8 and IL-8 murine homologs (Cxcl1, Cxcl2) were analyzed. In vitro, MSM increased tight junction expression (Occludin, ZO-1) vs Control, unlike MPL. However, no differences were observed in permeability assays (FITC-dextran, Lucifer yellow). MSM increased the secretion and gene expression of IL-8 but not of other inflammatory cytokines. Moreover, cell incubation with IL-8 induced an overexpression of tight junction proteins. In mice, mRNA level of Cxcl1 and Cxcl2 in the ileum were increased after gavage with MSM vs NaCl but not with MPL. Altogether, these results suggest a specific action of MSM on intestinal tight junction expression, possibly mediated by IL-8. Our study provides clues to shed light on the beneficial effects of MPL on intestinal functions and supports the need for further mechanistic exploration of the direct vs indirect effects of MSM and IL-8 on the gut barrier.


Assuntos
Interleucina-8/metabolismo , Lipídeos/farmacologia , Leite/química , Junções Íntimas/metabolismo , Animais , Células CACO-2 , Quimiocina CXCL1/genética , Quimiocina CXCL2/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Intestinos/citologia , Lipídeos/química , Masculino , Camundongos Endogâmicos C57BL , Esfingomielinas/administração & dosagem , Esfingomielinas/farmacologia , Proteínas de Junções Íntimas/genética
3.
Mol Nutr Food Res ; 63(4): e1801078, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30628158

RESUMO

SCOPE: Enhanced adiposity and metabolic inflammation are major features of obesity associated with altered gut microbiota and intestinal barrier. How these metabolic outcomes can be impacted by milk polar lipids (MPL), naturally containing 25% of sphingomyelin, is investigated in mice fed a mixed high-fat (HF) diet . METHODS AND RESULTS: Male C57Bl/6 mice receive a HF-diet devoid of MPL (21% fat, mainly palm oil, in chow), or supplemented with 1.1% or 1.6% of MPL (HF-MPL1; HF-MPL2) via a total-lipid extract from butterserum concentrate for 8 weeks. HF-MPL2 mice gain less weight versus HF (p < 0.01). Diets do not impact plasma markers of inflammation but in the liver, HF-MPL2 tends to decrease hepatic gene expression of macrophage marker F4/80 versus HF-MPL1 (p = 0.06). Colonic crypt depth is the maximum in HF-MPL2 (p < 0.05). In cecal microbiota, HF-MPL1 increases Bifidobacterium animalis versus HF (p < 0.05). HF-MPL2 decreases Lactobacillus reuteri (p < 0.05), which correlates negatively with the fecal loss of milk sphingomyelin-specific fatty acids (p < 0.05). CONCLUSION: In mice fed a mixed HF diet, MPL can limit HF-induced body weight gain and modulate gut physiology and the abundance in microbiota of bacteria of metabolic interest. This supports further exploration of how residual unabsorbed lipids reaching the colon can impact HF-induced metabolic disorders.


Assuntos
Ácidos Graxos/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Lipídeos/farmacologia , Leite/química , Animais , Dieta Hiperlipídica , Ácidos Graxos/análise , Fezes , Absorção Intestinal , Lipídeos/administração & dosagem , Lipídeos/análise , Lipídeos/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Esfingomielinas/farmacologia , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA