Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2312892121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713622

RESUMO

Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus, the two most abundant phototrophs on Earth, thrive in oligotrophic oceanic regions. While it is well known that specific lineages are exquisitely adapted to prevailing in situ light and temperature regimes, much less is known of the molecular machinery required to facilitate occupancy of these low-nutrient environments. Here, we describe a hitherto unknown alkaline phosphatase, Psip1, that has a substantially higher affinity for phosphomonoesters than other well-known phosphatases like PhoA, PhoX, or PhoD and is restricted to clade III Synechococcus and a subset of high light I-adapted Prochlorococcus strains, suggesting niche specificity. We demonstrate that Psip1 has undergone convergent evolution with PhoX, requiring both iron and calcium for activity and likely possessing identical key residues around the active site, despite generally very low sequence homology. Interrogation of metagenomes and transcriptomes from TARA oceans and an Atlantic Meridional transect shows that psip1 is abundant and highly expressed in picocyanobacterial populations from the Mediterranean Sea and north Atlantic gyre, regions well recognized to be phosphorus (P)-deplete. Together, this identifies psip1 as an important oligotrophy-specific gene for P recycling in these organisms. Furthermore, psip1 is not restricted to picocyanobacteria and is abundant and highly transcribed in some α-proteobacteria and eukaryotic algae, suggesting that such a high-affinity phosphatase is important across the microbial taxonomic world to occupy low-P environments.


Assuntos
Fosfatase Alcalina , Prochlorococcus , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/genética , Prochlorococcus/genética , Prochlorococcus/metabolismo , Fósforo/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Synechococcus/genética , Synechococcus/metabolismo , Filogenia , Água do Mar/microbiologia
2.
Arch Virol ; 168(2): 74, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683075

RESUMO

This article summarises the activities of the Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses for the period of March 2021-March 2022. We provide an overview of the new taxa proposed in 2021, approved by the Executive Committee, and ratified by vote in 2022. Significant changes to the taxonomy of bacterial viruses were introduced: the paraphyletic morphological families Podoviridae, Siphoviridae, and Myoviridae as well as the order Caudovirales were abolished, and a binomial system of nomenclature for species was established. In addition, one order, 22 families, 30 subfamilies, 321 genera, and 862 species were newly created, promoted, or moved.


Assuntos
Bacteriófagos , Caudovirales , Siphoviridae , Vírus , Humanos , Vírus/genética , Myoviridae
3.
Nucleic Acids Res ; 49(11): 6399-6419, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34096591

RESUMO

sRNAs are a taxonomically-restricted but transcriptomically-abundant class of post-transcriptional regulators. While of major importance for adaption to the environment, we currently lack global-scale methodology enabling target identification, especially in species without known RNA hub proteins (e.g. Hfq). Using psoralen RNA cross-linking and Illumina-sequencing we identify RNA-RNA interacting pairs in vivo in Bacillus subtilis, resolving previously well-described interactants. Although sRNA-sRNA pairings are rare (compared with sRNA-mRNA), we identify a robust example involving the conserved sRNA RoxS and an unstudied sRNA RosA (Regulator of sRNA A). We show RosA to be the first confirmed RNA sponge described in a Gram-positive bacterium. RosA interacts with at least two sRNAs, RoxS and FsrA. The RosA/RoxS interaction not only affects the levels of RoxS but also its processing and regulatory activity. We also found that the transcription of RosA is repressed by CcpA, the key regulator of carbon-metabolism in B. subtilis. Since RoxS is already known to be transcriptionally controlled by malate via the transcriptional repressor Rex, its post-transcriptional regulation by CcpA via RosA places RoxS in a key position to control central metabolism in response to varying carbon sources.


Assuntos
Bacillus subtilis/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Aptidão Genética , Proteoma , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/fisiologia , Transcrição Gênica
4.
BMC Biol ; 20(1): 175, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941649

RESUMO

BACKGROUND: Cyanobacteria are the major prokaryotic primary producers occupying a range of aquatic habitats worldwide that differ in levels of salinity, making them a group of interest to study one of the major unresolved conundrums in aquatic microbiology which is what distinguishes a marine microbe from a freshwater one? We address this question using ecogenomics of a group of picocyanobacteria (cluster 5) that have recently evolved to inhabit geographically disparate salinity niches. Our analysis is made possible by the sequencing of 58 new genomes from freshwater representatives of this group that are presented here, representing a 6-fold increase in the available genomic data. RESULTS: Overall, freshwater strains had larger genomes (≈2.9 Mb) and %GC content (≈64%) compared to brackish (2.69 Mb and 64%) and marine (2.5 Mb and 58.5%) isolates. Genomic novelties/differences across the salinity divide highlighted acidic proteomes and specific salt adaptation pathways in marine isolates (e.g., osmolytes/compatible solutes - glycine betaine/ggp/gpg/gmg clusters and glycerolipids glpK/glpA), while freshwater strains possessed distinct ion/potassium channels, permeases (aquaporin Z), fatty acid desaturases, and more neutral/basic proteomes. Sulfur, nitrogen, phosphorus, carbon (photosynthesis), or stress tolerance metabolism while showing distinct genomic footprints between habitats, e.g., different types of transporters, did not obviously translate into major functionality differences between environments. Brackish microbes show a mixture of marine (salt adaptation pathways) and freshwater features, highlighting their transitional nature. CONCLUSIONS: The plethora of freshwater isolates provided here, in terms of trophic status preference and genetic diversity, exemplifies their ability to colonize ecologically diverse waters across the globe. Moreover, a trend towards larger and more flexible/adaptive genomes in freshwater picocyanobacteria may hint at a wider number of ecological niches in this environment compared to the relatively homogeneous marine system.


Assuntos
Cianobactérias , Salinidade , Cianobactérias/genética , Cianobactérias/metabolismo , Ecossistema , Água Doce , Proteoma/metabolismo
5.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835353

RESUMO

Bacteriophages are the most abundant biological entities in the oceans and play key roles in bacterial activity, diversity and evolution. While extensive research has been conducted on the role of tailed viruses (Class: Caudoviricetes), very little is known about the distribution and functions of the non-tailed viruses (Class: Tectiliviricetes). The recent discovery of the lytic Autolykiviridae family demonstrated the potential importance of this structural lineage, emphasizing the need for further exploration of the role of this group of marine viruses. Here, we report the novel family of temperate phages under the class of Tectiliviricetes, which we propose to name "Asemoviridae" with phage NO16 as a main representative. These phages are widely distributed across geographical regions and isolation sources and found inside the genomes of at least 30 species of Vibrio, in addition to the original V. anguillarum isolation host. Genomic analysis identified dif-like sites, suggesting that NO16 prophages recombine with the bacterial genome based on the XerCD site-specific recombination mechanism. The interactions between the NO16 phage and its V. anguillarum host were linked to cell density and phage-host ratio. High cell density and low phage predation levels were shown to favor the temperate over the lytic lifestyle for NO16 viruses, and their spontaneous induction rate was highly variable between different V. anguillarum lysogenic strains. NO16 prophages coexist with the V. anguillarum host in a mutualistic interaction by rendering fitness properties to the host, such as increased virulence and biofilm formation through lysogenic conversion, likely contributing to their global distribution.


Assuntos
Bacteriófagos , Vibrio , Lisogenia , Bacteriófagos/genética , Prófagos/genética , Vibrio/genética , Genoma Bacteriano
6.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835084

RESUMO

Salmonella infections across the globe are becoming more challenging to control due to the emergence of multidrug-resistant (MDR) strains. Lytic phages may be suitable alternatives for treating these multidrug-resistant Salmonella infections. Most Salmonella phages to date were collected from human-impacted environments. To further explore the Salmonella phage space, and to potentially identify phages with novel characteristics, we characterized Salmonella-specific phages isolated from the Penang National Park, a conserved rainforest. Four phages with a broad lytic spectrum (kills >5 Salmonella serovars) were further characterized; they have isometric heads and cone-shaped tails, and genomes of ~39,900 bp, encoding 49 CDSs. As the genomes share a <95% sequence similarity to known genomes, the phages were classified as a new species within the genus Kayfunavirus. Interestingly, the phages displayed obvious differences in their lytic spectrum and pH stability, despite having a high sequence similarity (~99% ANI). Subsequent analysis revealed that the phages differed in the nucleotide sequence in the tail spike proteins, tail tubular proteins, and portal proteins, suggesting that the SNPs were responsible for their differing phenotypes. Our findings highlight the diversity of novel Salmonella bacteriophages from rainforest regions, which can be explored as an antimicrobial agent against MDR-Salmonella strains.


Assuntos
Bacteriófagos , Infecções por Salmonella , Fagos de Salmonella , Humanos , Fagos de Salmonella/genética , Floresta Úmida , Salmonella/genética , Bacteriófagos/genética , Infecções por Salmonella/genética , Fenótipo , Genômica , Genoma Viral
7.
Indian J Microbiol ; 63(3): 386-394, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37781021

RESUMO

Tomato (Solanum lycopersicum L.) is an important grown vegetable in Vietnam. Bacterial wilt caused by Pseudomonas solanacearum has been considered to be an important disease resulting in a harvest loss up to 90% and significant economic loss to farmers. In this study, two bacteriophages DLDT_So2 and BHDT_So9 specific to P. solanacearum were isolated. Morphological analysis indicated that DLDT_So2 and BHDT_So9 had podovirus morphology and were classified into Autographiviridae family. The latent period and burst size of DLDT_So2 was found to be approximately 120 min and 20.0 ± 2.4 virions per infected cell. Meanwhile, the latent period of BHDT_So9 was 140 min with a burst size of 11.5 ± 2.8 virions per infected cell. Of the 23 bacterial strains tested, the phages infected 7/11 strains of P. solanacearum and none of the other bacteria tested were susceptible to the phages. Stability of the phages at different temperatures, pHs, solvents was also investigated. The genomes of DLDT_So2 and BHDT_So9 are 41,341 bp and 41,296 bp and long with a total GC content of 63%, contains 48 and 46 predicted protein-encoding CDSs. No virulence or antibiotic resistance genes were found in the genomes, suggesting they would be useful biocontrol agents against P. solanacearum. Classification of the phage using average nucleotide identity, phylogenetic analysis was also carried out. The two phages represented new species when they had overall average nucleotide identity of < 95%. This is first report of the isolation and characterization of P. solanacearum-specific phages from tomato farms in Vietnam. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01090-9.

8.
Environ Microbiol ; 24(10): 4533-4546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35837865

RESUMO

Pseudomonas aeruginosa is an important Gram-negative pathogen with intrinsic resistance to many clinically used antibiotics. It is particularly troublesome in nosocomial infections, immunocompromised patients, and individuals with cystic fibrosis. Antimicrobial resistance (AMR) is a huge threat to global health, with a predicted 10 million people dying from resistant infections by 2050. A promising therapy for combatting AMR infections is phage therapy. However, more research is required to investigate mechanisms that may influence the efficacy of phage therapy. An important overlooked aspect is the impact of membrane lipid remodelling on phage binding ability. P. aeruginosa undergoes changes in membrane lipids when it encounters phosphorus stress, an environmental perturbation that is likely to occur during infection. Lipid changes include the substitution of glycerophospholipids with surrogate glycolipids and the over-production of ornithine-containing aminolipids. Given that membrane lipids are known to influence the structure and function of membrane proteins, we propose that changes in the composition of membrane lipids during infection may alter phage binding and subsequent phage infection dynamics. Consideration of such effects needs to be urgently prioritised in order to develop the most effective phage therapy strategies for P. aeruginosa infections.


Assuntos
Bacteriófagos , Terapia por Fagos , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriófagos/genética , Glicerofosfolipídeos , Glicolipídeos , Humanos , Lipídeos de Membrana , Proteínas de Membrana , Ornitina , Terapia por Fagos/métodos , Fósforo , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa
9.
Environ Microbiol ; 23(9): 5349-5363, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097814

RESUMO

Evolution of virulence traits from adaptation to environmental niches other than the host is probably a common feature of marine microbial pathogens, whose knowledge might be crucial to understand their emergence and pathogenetic potential. Here, we report genome sequence analysis of a novel marine bacterial species, Vibrio bathopelagicus sp. nov., isolated from warm bathypelagic waters (3309 m depth) of the Mediterranean Sea. Interestingly, V. bathopelagicus sp. nov. is closely related to coastal Vibrio strains pathogenic to marine bivalves. V. bathopelagicus sp. nov. genome encodes genes involved in environmental adaptation to the deep-sea but also in virulence, such as the R5.7 element, MARTX toxin cluster, Type VI secretion system and zinc-metalloprotease, previously associated with Vibrio infections in farmed oysters. The results of functional in vitro assays on immunocytes (haemocytes) of the Mediterranean mussel Mytilus galloprovincialis and the Pacific oyster Crassostrea gigas, and of the early larval development assay in Mytilus support strong toxicity of V. bathopelagicus sp. nov. towards bivalves. V. bathopelagicus sp. nov., isolated from a remote Mediterranean bathypelagic site, is an example of a planktonic marine bacterium with genotypic and phenotypic traits associated with animal pathogenicity, which might have played an evolutionary role in the origin of coastal marine pathogens.


Assuntos
Crassostrea , Mytilus , Vibrioses , Vibrio , Animais , Mar Mediterrâneo , Vibrio/genética
10.
Biochem Biophys Res Commun ; 580: 107-112, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638028

RESUMO

Peroxynitrite is a reactive intermediate formed in vivo through uncatalysed reaction of superoxide and nitric oxide radicals. Despite significant interest in detecting peroxynitrite in vivo and understanding its production, little attention has been given to the evolutionary origins of peroxynitrite signalling. Herein we focus on two enzymes that are key to the biosynthesis of superoxide and nitric oxide, NADPH oxidase 5 (NOX5) and endothelial nitric oxide synthase (eNOS), respectively. Multiple sequence alignments of both enzymes including homologues from all domains of life, coupled with a phylogenetic analysis of NOX5, suggest eNOS and NOX5 are present in animals as the result of horizontal gene transfer from ancestral cyanobacteria to ancestral eukaryotes. Therefore, biochemical studies from other laboratories on a NOX5 homologue in Cylindrospermum stagnale and an eNOS homologue in Synechococcus sp. PCC 7335 are likely to be of relevance to human NOX5 and eNOS and to the production of superoxide, nitric oxide and peroxynitrite in humans.


Assuntos
Ácido Peroxinitroso/metabolismo , Transdução de Sinais , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Evolução Molecular , Humanos , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ácido Peroxinitroso/genética , Filogenia , Superóxidos/metabolismo
11.
BMC Microbiol ; 21(1): 186, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154528

RESUMO

BACKGROUND: Multidrug-resistant Klebsiella pneumoniae spp. (kp) are emerging agents of severe infections of the respiratory, urinary tract and wounds that can progress to fatal septicemia. The use of bacteriophages is currently being considered as an effective alternative or adjuvant to antibiotic therapy. RESULTS: In this study, we report capsule (K)-typing of 163 carbapenem-resistant Kp (CRKP) isolated 2014-2018 at the Military Hospital of Instruction of Tunis (MHT), Tunisia, by partial amplification and sequencing of the Kp wzi gene. The most prevalent K-type overall was K64 with 50.3% followed by K17 and K27 (22.7 and 11.0%, respectively). K64 Kp strains were most common and associated with increased case/fatality rates, especially at the intensive care unit (ICU). Using a K64 Kp strain we isolated and characterized a lytic Kp phage, vB_KpP_TUN1 (phage TUN1), from wastewater samples of the ICU at the MHT. TUN1 belongs to the Autographiviridae family and specifically digests K64 Kp capsules most probably via a depolymerase encoded by gp47. Furthermore, we successfully assembled phage TUN1 in a non-replicative host (E. coli) raising the possibility of in vitro assembly in the absence of live bacterial hosts. We propose that phage TUN1 is a promising candidate to be used as an adjuvant or an alternative to antibiotic therapy in CRKP infections, facilitating regulatory approval of phage therapy. CONCLUSIONS: K64, K17 and K27 are the most common wzi capsule types in this geographical location in Northern Africa. The lytic phage TUN1 efficiently lyses K64 Kp strains associated with increased case/fatality rates at body temperature. Together with its ability to be rescued in a non-replicative host these features enhance the utility of this phage as an antibacterial agent.


Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/virologia , Humanos , Tunísia
12.
Arch Virol ; 166(11): 3239-3244, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417873

RESUMO

In this article, we - the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) - summarise the results of our activities for the period March 2020 - March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).


Assuntos
Vírus de Archaea/classificação , Bacteriófagos/classificação , Sociedades Científicas/organização & administração , Archaea/virologia , Bactérias/virologia
13.
Am J Phys Anthropol ; 175 Suppl 72: 57-78, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33460467

RESUMO

Breastfeeding is known to be a powerful mediator of maternal and childhood health, with impacts throughout the life course. Paleodietary studies of the past 30 years have accordingly taken an enduring interest in the health and diet of young children as a potential indicator of population fertility, subsistence, and mortality patterns. While progress has been made in recent decades toward acknowledging the agency of children, many paleodietary reconstructions have failed to incorporate developments in cognate disciplines revealing synergistic dynamics between maternal and offspring biology. Paleodietary interpretation has relied heavily on the "weanling's dilemma," in which infants are thought to face a bleak choice between loss of immunity or malnutrition. Using a review of immunological and epidemiological evidence for the dynamic and supportive role that breastfeeding plays throughout the complementary feeding period, this article offers context and nuance for understanding past feeding transitions. We suggest that future interpretative frameworks for infant paleodietary and bioarchaeological research should include a broad knowledge base that keeps pace with relevant developments outside of those disciplines.


Assuntos
Dieta , Fenômenos Fisiológicos da Nutrição do Lactente , Leite Humano , Aleitamento Materno , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente/imunologia , Fenômenos Fisiológicos da Nutrição do Lactente/fisiologia , Leite Humano/imunologia , Leite Humano/fisiologia , Paleontologia , Desmame
14.
Environ Microbiol ; 22(12): 5058-5072, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32483914

RESUMO

Listeria monocytogenes is a foodborne pathogen causing systemic infection with high mortality. To allow efficient tracking of outbreaks a clear definition of the genomic signature of a cluster of related isolates is required, but lineage-specific characteristics call for a more detailed understanding of evolution. In our work, we used core genome MLST (cgMLST) to identify new outbreaks combined to core genome SNP analysis to characterize the population structure and gene flow between lineages. Whilst analysing differences between the four lineages of L. monocytogenes we have detected differences in the recombination rate, and interestingly also divergence in the SNP differences between sub-lineages. In addition, the exchange of core genome variation between the lineages exhibited a distinct pattern, with lineage III being the best donor for horizontal gene transfer. Whilst attempting to link bacteriophage-mediated transduction to observed gene transfer, we found an inverse correlation between phage presence in a lineage and the extent of recombination. Irrespective of the profound differences in recombination rates observed between sub-lineages and lineages, we found that the previously proposed cut-off of 10 allelic differences in cgMLST can be still considered valid for the definition of a foodborne outbreak cluster of L. monocytogenes.


Assuntos
Bacteriófagos/fisiologia , Evolução Molecular , Fluxo Gênico , Listeria monocytogenes/genética , Transferência Genética Horizontal , Variação Genética , Genoma Bacteriano/genética , Listeria monocytogenes/classificação , Listeria monocytogenes/isolamento & purificação , Listeria monocytogenes/virologia , Listeriose/epidemiologia , Listeriose/microbiologia , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único , Recombinação Genética
15.
Arch Virol ; 165(12): 2973-2977, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32886215

RESUMO

The bacteriophage vB_AhM_PVN02 (PVN02), infecting Aeromonas hydrophila, was isolated from a striped catfish pond water sample in Can Tho City, Vietnam. The phage had high lytic activity with a latent period and burst size of approximately 20 min and 105 plaque-forming units per cell, respectively. Observation of the phage by transmission electron microscopy indicated that PVN02 belongs to the family Myoviridae. The genome of PVN02 is a double-stranded linear DNA with a length in 51,668 bp and a content of 52% GC. Among the 64 genes, 16 were predicted to encode proteins with predicted functions. No virulence or antibiotic resistance genes were found in the genome, suggesting it would be a useful biocontrol agent. Classification of the phage based on sequence comparisons, phylogenetic analysis, and gene-sharing networks was carried out, and it was found to be the first representative of a new species within a previously undefined genus in the family Myoviridae. This study confirmed that PVN02 is a novel lytic phage that could potentially be used as an agent to control Aeromonas hydrophila in striped catfish in the Mekong Delta, Vietnam.


Assuntos
Aeromonas hydrophila/virologia , Peixes-Gato/microbiologia , Myoviridae/genética , Filogenia , Animais , Aquicultura , Doenças dos Peixes/microbiologia , Genômica , Vietnã , Sequenciamento Completo do Genoma
16.
Am J Phys Anthropol ; 171(3): 529-538, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31618449

RESUMO

OBJECTIVES: To identify and characterize anthropogenic lead sources on a 17th/18th century Barbadian plantation and to test if lead isotope analyses can be used to identify the geographic origins of first-generation African captives. MATERIALS AND METHODS: We carried out lead (Pb) isotope analyses on dental enamel samples from 24 individuals from the Newton Plantation Cemetery in Barbados, which had previously been analyzed for strontium (Sr) and oxygen (O) isotope composition (Schroeder et al., American Journal of Physical Anthropology, 2009, 139:547-557) and Pb concentrations (Schroeder et al., American Journal of Physical Anthropology, 2013, 150:203-209. RESULTS: We are able to identify British Pb sources, and more specifically Bristol/Mendips Pb, as the most likely source of anthropogenic Pb on the plantation, highlighting the impact of the British Atlantic economy on the lives of enslaved peoples in Barbados during the period of plantation slavery. Furthermore, we find that there is only one clear outlier among seven individuals who had previously been identified as African-born based on their enamel Sr isotope composition (Schroeder et al., American Journal of Physical Anthropology, 2009, 139:547-557). All other individuals present a very homogenous Pb isotope composition, which overlaps with that of British Pb sources. CONCLUSION: Our results indicate that while Pb isotope analyses can help identify and further characterize the sources of anthropogenic Pb in plantation settings, they might not be suited for identifying the origins of African-born individuals in diasporic contexts.


Assuntos
Esmalte Dentário/química , Pessoas Escravizadas , Isótopos/análise , Chumbo/análise , Adolescente , Adulto , África Ocidental/etnologia , Barbados , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Am J Phys Anthropol ; 172(4): 605-620, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32424829

RESUMO

OBJECTIVES: Colonial period New Zealand was lauded as a land of plenty, where colonists could improve their station in life and secure a future for their families. Our understanding of colonial experience, however, is often shaped by historical records which communicate a state-sponsored version of history. This study aims to reconstruct the lives of settlers using isotopic evidence from the colonial skeletons themselves. MATERIALS AND METHODS: We use skeletal remains from recently excavated colonial sites in Otago (South Island, New Zealand) to illustrate the information that can be gleaned from the isotopic analysis of individuals. We use 87 Sr/86 Sr to identify European settlers, and δ13 C and δ15 N from collagen and hair keratin, as well as dental enamel carbonate δ13 C to trace dietary change over their life-courses. RESULTS: Strontium isotope analysis shows that all adults in our sample are non-local. Dietary isotopes show that while most individuals had relatively consistent childhood diet, one individual with more rural origins likely had seasonal use of resources during childhood. While some members of the population seem to have increased their meat intake in the new colony most do not have clear evidence for this. DISCUSSION: We show the diversity of human experience in first-generation New Zealanders both prior to emigration and in the new colony. Despite colonial propaganda claiming that circumstances in New Zealand were improved for all settlers, we have little evidence for this, aside from among individuals of potentially high status.


Assuntos
Dieta/história , Emigração e Imigração/história , População Branca/história , Adulto , Arqueologia , Colágeno/química , Colonialismo/história , Dentina/química , Feminino , Cabelo/química , História do Século XVIII , História do Século XIX , Humanos , Isótopos/análise , Masculino , Pessoa de Meia-Idade , Nova Zelândia , Adulto Jovem
18.
Environ Microbiol ; 21(6): 2112-2128, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884081

RESUMO

Bacteriophages infecting Escherichia coli (coliphages) have been used as a proxy for faecal matter and water quality from a variety of environments. However, the diversity of coliphages that is present in seawater remains largely unknown, with previous studies largely focusing on morphological diversity. Here, we isolated and characterized coliphages from three coastal locations in the United Kingdom and Poland. Comparative genomics and phylogenetic analysis of phage isolates facilitated the identification of putative new species within the genera Rb69virus and T5virus and a putative new genus within the subfamily Tunavirinae. Furthermore, genomic and proteomic analysis combined with host range analysis allowed the identification of a putative tail fibre that is likely responsible for the observed differences in host range of phages vB_Eco_mar003J3 and vB_Eco_mar004NP2.


Assuntos
Colífagos/genética , Água do Mar/virologia , Colífagos/classificação , Colífagos/isolamento & purificação , Colífagos/fisiologia , Escherichia coli/genética , Escherichia coli/virologia , Genoma Viral , Genômica , Especificidade de Hospedeiro , Myoviridae/classificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Filogenia , Polônia , Proteômica , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Siphoviridae/fisiologia , Reino Unido
19.
Biochem Biophys Res Commun ; 510(1): 27-34, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30660368

RESUMO

Retinoic acid signalling is generally considered to be of animal origin. Recently, retinoic acid has been identified in cyanobacteria, yet no mechanism for its production has been identified. Here, we characterise for the first time a cyanobacterial aldehyde dehydrogenase that produces retinoic acid in vitro. Our computational studies suggest that the cyanobacterial aldehyde dehydrogenase resembles an ancestor of both eukaryotic aldehyde dehydrogenase 1 and aldehyde dehydrogenase 2. The Chlorogloeopsis fritschii aldehyde dehydrogenase described here may find applications in synthetic production of retinoic acid as well as contributing to our understanding of retinoid synthesis in cyanobacteria.


Assuntos
Aldeído Desidrogenase/metabolismo , Cianobactérias/enzimologia , Tretinoína/metabolismo , Cianobactérias/metabolismo , Evolução Molecular , Filogenia
20.
Appl Environ Microbiol ; 85(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253674

RESUMO

The fast-growing marine bacterium Vibrio natriegens represents an emerging strain for molecular biology and biotechnology. Genome sequencing and quantitative PCR analysis revealed that the first chromosome of V. natriegens ATCC 14048 contains two prophage regions (VNP1 and VNP2) that are both inducible by the DNA-damaging agent mitomycin C and exhibit spontaneous activation under standard cultivation conditions. Their activation was also confirmed by live cell imaging of an mCherry fusion to the major capsid proteins of VNP1 and VNP2. Transmission electron microscopy visualized the release of phage particles belonging to the Siphoviridae family into the culture supernatant. Freeing V. natriegens from its proviral load, followed by phenotypic characterization, revealed an improved robustness of the prophage-free variant toward DNA-damaging conditions, reduced cell lysis under hypo-osmotic conditions, and an increased pyruvate production compared to wild-type levels. Remarkably, the prophage-free strain outcompeted the wild type in a competitive growth experiment, emphasizing that this strain is a promising platform for future metabolic engineering approaches.IMPORTANCE The fast-growing marine bacterium Vibrio natriegens represents an emerging model host for molecular biology and biotechnology, featuring a reported doubling time of less than 10 minutes. In many bacterial species, viral DNA (prophage elements) may constitute a considerable fraction of the whole genome and may have detrimental effects on the growth and fitness of industrial strains. Genome analysis revealed the presence of two prophage regions in the V. natriegens genome that were shown to undergo spontaneous induction under standard cultivation conditions. In this study, we generated a prophage-free variant of V. natriegens Remarkably, the prophage-free strain exhibited a higher tolerance toward DNA damage and hypo-osmotic stress. Moreover, it was shown to outcompete the wild-type strain in a competitive growth experiment. In conclusion, our study presents the prophage-free variant of V. natriegens as a promising platform strain for future biotechnological applications.


Assuntos
Dano ao DNA , Pressão Osmótica , Prófagos/fisiologia , Vibrio/fisiologia , Vibrio/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA