Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38842428

RESUMO

In a previous study characterizing Campylobacter strains deficient in selenium metabolism, 50 strains were found to be similar to, but distinct from, the selenonegative species Campylobacter lanienae. Initial characterization based on multilocus sequence typing and the phylogeny of a set of 20 core genes determined that these strains form three putative taxa within the selenonegative cluster. A polyphasic study was undertaken here to further clarify their taxonomic position within the genus. The 50 selenonegative strains underwent phylogenetic analyses based on the sequences of the 16S rRNA gene and an expanded set of 330 core genes. Standard phenotypic testing was also performed. All strains were microaerobic and anaerobic, Gram-negative, spiral or curved cells with some displaying coccoid morphologies. Strains were motile, oxidase, catalase, and alkaline phosphatase positive, urease negative, and reduced nitrate. Strains within each clade had unique phenotypic profiles that distinguished them from other members of the genus. Core genome phylogeny clearly placed the 50 strains into three clades. Pairwise average nucleotide identity and digital DNA-DNA hybridization values were all below the recommended cut-offs for species delineation with respect to C. lanienae and other related Campylobacter species. The data presented here clearly show that these strains represent three novel species within the genus, for which the names Campylobacter devanensis sp. nov. (type strain RM3662T=LMG 33097T=NCTC 15074T), Campylobacter porcelli sp. nov. (type strain RM6137T=LMG 33098T=CCUG 77054T=NCTC 15075T) and Campylobacter vicugnae sp. nov. (type strain RM12175T=LMG 33099T=CCUG 77055T=NCTC 15076T) are proposed.


Assuntos
Técnicas de Tipagem Bacteriana , Campylobacter , DNA Bacteriano , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Campylobacter/genética , Campylobacter/classificação , Campylobacter/isolamento & purificação , Animais , DNA Bacteriano/genética , Suínos , Ruminantes/microbiologia
2.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34825881

RESUMO

This paper re-examines the taxonomic positions of recently described Poseidonibacter (P. parvum and P. antarcticus), Aliarcobacter ('Al. vitoriensis'), Halarcobacter ('H. arenosus') and Arcobacter (A. caeni, A. lacus) species, and other species proposed to represent novel genera highly related to the genus Arcobacter. Phylogenomic and several overall genome relatedness indices (OGRIs) were applied to a total of 118 representative genomes for this purpose. Phylogenomic analyses demonstrated the Arcobacter clade to be distinct from other Epsilonproteobacteria, clearly defined and containing closely related species. Aliarcobacter butzleri and Malaciobacter pacificus did not cluster with other members of these proposed genera, indicating incoherence of these genera. Every OGRI measure applied indicated a high level of relatedness among all Arcobacter clade species, including the recently described taxa studied here, and substantially lower between type species representatives for other Epsilonproteobacteria. Where published guidelines were available, OGRI values for Arcobacter clade species were either unsupportive of division into other genera or were at the lowest boundary range (for average amino acid identity). We propose that Aliarcobacter, Halarcobacter, Malaciobacter, Pseudarcobacter, Poseidonibacter and Arcobacter sensu stricto be considered members of a single genus, Arcobacter, and subsequently transfer P. parvum, P. antarcticus, 'Al. vitoriensis' and 'H. arenosus' to Arcobacter as Arcobacter parvum comb. nov., Arcobacter antarcticus comb. nov., Arcobacter vitoriensis comb. nov. and Arcobacter arenosus comb. nov.


Assuntos
Arcobacter , Filogenia , Arcobacter/classificação
3.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32769187

RESUMO

In September 2018, Hurricane Florence caused extreme flooding in eastern North Carolina, USA, a region highly dense in concentrated animal production, especially swine and poultry. In this study, floodwater samples (n = 96) were collected as promptly post-hurricane as possible and for up to approximately 30 days and selectively enriched for Campylobacter using Bolton broth enrichment and isolation on modified charcoal cefoperazone deoxycholate agar (mCCDA) microaerobically at 42°C. Only one sample yielded Campylobacter, which was found to be Campylobacter jejuni with the novel sequence type 2866 (ST-2866). However, the methods employed to isolate Campylobacter readily yielded Arcobacter from 73.5% of the floodwater samples. The Arcobacter isolates failed to grow on Mueller-Hinton agar at 25, 30, 37, or 42°C microaerobically or aerobically but could be readily subcultured on mCCDA at 42°C microaerobically. Multilocus sequence typing of 112 isolates indicated that all were Arcobacter butzleri The majority (85.7%) of the isolates exhibited novel sequence types (STs), with 66 novel STs identified. Several STs, including certain novel ones, were detected in diverse waterbody types (channel, isolated ephemeral pools, floodplain) and from multiple watersheds, suggesting the potential for regionally dominant strains. The genotypes were clearly partitioned into two major clades, one with high representation of human and ruminant isolates and another with an abundance of swine and poultry isolates. Surveillance of environmental waters and food animal production systems in this animal agriculture-dense region is needed to assess potential regional prevalence and temporal stability of the observed A. butzleri strains as well as their potential association with specific types of food animal production.IMPORTANCE Climate change and associated extreme weather events can have massive impacts on the prevalence of microbial pathogens in floodwaters. However, limited data are available on foodborne zoonotic pathogens such as Campylobacter or Arcobacter in hurricane-associated floodwaters in rural regions with intensive animal production. With a high density of intensive animal production as well as pronounced vulnerability to hurricanes, eastern North Carolina presents unique opportunities in this regard. Our findings revealed widespread incidence of the emerging zoonotic pathogen Arcobacter butzleri in floodwaters from Hurricane Florence. We encountered high and largely unexplored diversity while also noting the potential for regionally abundant and persistent clones. We noted pronounced partitioning of the floodwater genotypes into two source-associated clades. The data will contribute to elucidating the poorly understood ecology of this emerging pathogen and highlight the importance of surveillance of floodwaters associated with hurricanes and other extreme weather events for Arcobacter and other zoonotic pathogens.


Assuntos
Arcobacter/isolamento & purificação , Tempestades Ciclônicas , Genótipo , Rios/microbiologia , Arcobacter/genética , Campylobacter jejuni/isolamento & purificação , Inundações , Tipagem de Sequências Multilocus , North Carolina
4.
Int J Syst Evol Microbiol ; 70(6): 3921-3923, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32392122

RESUMO

Arcobacter anaerophilus was originally described as the first obligate anaerobe in this genus by Sasi Jyothsna et al. 2013. The complete genome sequence of the type strain of this species was determined and analysed. Genes characteristic for organisms capable of aerobic growth were identified, and the ability of the organism to grow under microaerobic and aerobic conditions was confirmed in two independent laboratories. The description of A. anaerophilus is thus emended and the wider ramifications of these findings are discussed.


Assuntos
Arcobacter/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Genes Bacterianos , Genômica , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Dis Aquat Organ ; 142: 41-46, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33210610

RESUMO

Campylobacter pinnipediorum was described recently for isolates recovered from pinnipeds. The novel species was further split into 2 subspecies based on host and geography, with C. pinnipediorum subsp. pinnipediorum recovered from otariid seals in California (USA) and C. pinnipediorum subsp. caledonicus recovered from phocid seals in Scotland. We report details of the infections of 7 pinnipeds from which C. pinnipediorum was isolated: C. pinnipediorum subsp. caledonicus was isolated from 2 harbour seals Phoca vitulina and a single grey seal Halichoerus grypus, and C. pinnipediorum subsp. pinnipediorum was isolated from California sea lions Zalophus californianus. Six of the isolates were recovered from samples collected at post-mortem investigation. In 2 of the Scottish seals and in 3 of the California seals, C. pinnipediorum was the sole bacterial isolate recovered from abscesses present and suggests they may have resulted from conspecific or intraspecific bite wounds.


Assuntos
Campylobacter , Caniformia , Phoca , Focas Verdadeiras , Abscesso/veterinária , Animais , Escócia
6.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31519663

RESUMO

Campylobacter jejuni and Campylobacter coli are leading causes of human foodborne illness, with poultry as a major vehicle. Turkeys are frequently colonized with Campylobacter, but little is known about Campylobacter survival in turkey feces, even though fecal droppings are major vehicles for Campylobacter within-flock transmission as well as for environmental dissemination. Our objective was to examine survival of Campylobacter, including different strains, in freshly excreted feces from naturally colonized commercial turkey flocks and in suspensions of turkey feces in water from the turkey house. Fecal and water suspensions were stored at 4°C, and Campylobacter populations were enumerated on selective media at 48-h intervals. C. jejuni and C. coli isolates were characterized for resistance to a panel of antibiotics, and a subset was subtyped using multilocus sequence typing. Campylobacter was recovered from feces and water for up to 16 days. Analysis of 548 isolates (218 C. jejuni and 330 C. coli) revealed that C. jejuni survived longer than C. coli in feces (P = 0.0005), while the reverse was observed in water (P < 0.0001). Strain-specific differences in survival were noted. Multidrug-resistant C. jejuni isolates of sequence type 1839 (ST-1839) and the related ST-2935 were among the longest-surviving isolates in feces, being recovered for up to 10 to 16 days, while multidrug-resistant C. coli isolates of ST-1101 were recovered from feces for only up to 4 days. Data on Campylobacter survival upon excretion from the birds can contribute to further understanding of the transmission dynamics of this pathogen in the poultry production ecosystem.IMPORTANCECampylobacter jejuni and Campylobacter coli are leading foodborne pathogens, with poultry as a major reservoir. Due to their growth requirements, these Campylobacter spp. may be unable to replicate once excreted by their avian hosts, but their survival in feces and the environment is critical for transmission in the farm ecosystem. Reducing the prevalence of Campylobacter-positive flocks can have major impacts in controlling both contamination of poultry products and environmental dissemination of the pathogens. However, understanding the capacity of these pathogens to survive in transmission-relevant vehicles such as feces and farmhouse water remains poorly understood, and little information is available on species- and strain-associated differences in survival. Here, we employed model conditions to investigate the survival of C. jejuni and C. coli from naturally colonized turkey flocks, and with diverse genotypes and antimicrobial resistance profiles, in turkey feces and in farmhouse water.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter/fisiologia , Fezes/microbiologia , Viabilidade Microbiana , Microbiologia da Água , Animais , Técnicas de Tipagem Bacteriana , Campylobacter/classificação , Infecções por Campylobacter/microbiologia , Campylobacter coli/fisiologia , Campylobacter jejuni/fisiologia , Temperatura Baixa , Farmacorresistência Bacteriana Múltipla , Tipagem de Sequências Multilocus , Polimorfismo de Fragmento de Restrição , Perus
7.
Int J Syst Evol Microbiol ; 69(12): 3969-3979, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31714200

RESUMO

During a study on the prevalence and diversity of members of the genus Campylobacter in a shellfish-harvesting area and its catchment in Brittany, France, six urease-positive isolates of members of the genus Campylobacter were recovered from surface water samples, as well as three isolates from stools of humans displaying enteric infection in the same period. These strains were initially identified as members of the Campylobacter lari group by MALDI-TOF mass spectrometry and placed into a distinct group in the genus Campylobacter, following atpA gene sequence analysis based on whole-genome sequencing data. This taxonomic position was confirmed by phylogenetic analysis of the 16S rRNA, rpoB and hsp60 (groEL) loci, and an analysis of the core genome that provided an improved phylogenetic resolution. The average nucleotide identity between the representative strain CA656T (CCUG 73571T=CIP 111675T) and the type strain of the most closely related species Campylobacter ornithocola WBE38T was 88.5 %. The strains were found to be microaerobic and anaerobic, motile, non-spore-forming, Gram-stain-negative, spiral-shaped bacteria that exhibit catalase, oxidase and urease activities but not nitrate reduction. This study demonstrates clearly that the nine isolates represent a novel species within the C. lari group, for which the name Campylobacter armoricus is proposed. Here, we present phenotypic and morphological features of the nine strains and the description of their genome sequences. The proposed type strain CA656T has a 1.589 Mbp chromosome with a DNA G+C content of 28.5 mol% and encodes 1588 predicted coding sequences, 38 tRNAs, and 3 rRNA operons.


Assuntos
Campylobacter/classificação , Fezes/microbiologia , Filogenia , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , Campylobacter/isolamento & purificação , DNA Bacteriano/genética , França , Genes Bacterianos , Humanos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29980555

RESUMO

Campylobacter is a leading foodborne pathogen, and poultry products are major vehicles for human disease. However, determinants impacting Campylobacter colonization in poultry remain poorly understood, especially with turkeys. Here, we used a paired-farm design to concurrently investigate Campylobacter colonization and strain types in two turkey breeds (Hybrid and Nicholas) at two farms in eastern North Carolina. One farm (the Teaching Animal Unit [TAU]) was a university teaching unit at least 40 km from commercial turkey farms, while the other (SIB) was a commercial farm in an area with a high density of turkey farms. Day-old birds were obtained from the same breeder flock and hatchery and placed at TAU and SIB on the same day. Birds were marked to identify turkey breed and then commingled on each farm. TAU birds became colonized 1 week later than SIB and had lower initial Campylobacter levels in the cecum. Interestingly, Campylobacter genotypes and antimicrobial resistance profiles differed markedly between the farms. Most TAU isolates were resistant only to tetracycline, whereas multidrug-resistant isolates predominated at SIB. Multilocus sequence typing revealed that no Campylobacter genotypes were shared between TAU and SIB. A bovine-associated genotype (sequence type 1068 [ST1068]) predominated in Campylobacter coli from TAU, while SIB isolates had genotypes commonly encountered in commercial turkey production in the region. One multidrug-resistant Campylobacter jejuni strain (ST1839) showed significant association with one of the two turkey breeds. The findings highlight the need to further characterize the impact of farm-specific factors and host genetics on antimicrobial resistance and genotypes of C. jejuni and C. coli that colonize turkeys.IMPORTANCE Colonization of poultry with Campylobacter at the farm level is complex, poorly understood, and critically linked to contamination of poultry products, which is known to constitute a leading risk factor for human campylobacteriosis. Here, we investigated the use of a paired-farm design under standard production conditions and in the absence of experimental inoculations to assess potential impacts of farm and host genetics on prevalence, antimicrobial resistance and genotypes of Campylobacter in commercial turkeys of two different breeds. Data suggest impacts of farm proximity to other commercial turkey farms on the onset of colonization, genotypes, and antimicrobial resistance profiles of Campylobacter colonizing the birds. Furthermore, the significant association of a specific multidrug-resistant Campylobacter jejuni strain with turkeys of one breed suggests colonization partnerships at the Campylobacter strain-turkey breed level. The study design avoids potential pitfalls associated with experimental inoculations, providing novel insights into the dynamics of turkey colonization with Campylobacter in actual farm ecosystems.


Assuntos
Antibacterianos/farmacologia , Infecções por Campylobacter/veterinária , Campylobacter/isolamento & purificação , Farmacorresistência Bacteriana , Doenças das Aves Domésticas/microbiologia , Perus/microbiologia , Animais , Campylobacter/efeitos dos fármacos , Campylobacter/genética , Campylobacter/crescimento & desenvolvimento , Infecções por Campylobacter/economia , Infecções por Campylobacter/microbiologia , Fazendas/economia , Genótipo , Modelos Biológicos , Tipagem de Sequências Multilocus , North Carolina , Doenças das Aves Domésticas/economia
9.
Foodborne Pathog Dis ; 15(11): 698-700, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30096008

RESUMO

In Campylobacter spp., resistance to erythromycin and other macrolides has typically implicated ribosomal mutations, especially substitutions in the 23S rRNA genes. However, in 2014, the macrolide resistance gene erm(B) was reported for the first time in Campylobacter and shown to be harbored by a multidrug resistance island in the chromosome of the swine-derived strain Campylobacter coli ZC113. erm(B)-positive C. coli and Campylobacter jejuni strains from the food supply have been mostly reported from China. However, erm(B)-positive C. coli isolates were also detected recently in fecal samples from turkeys in Spain. To determine whether erm(B) may be harbored by erythromycin-resistant Campylobacter from commercial turkey production in eastern North Carolina, a major turkey-growing region in the United States, we investigated a panel of 178 erythromycin-resistant isolates (174 C. coli, 4 C. jejuni) using PCR with erm(B)-specific primers. None of the isolates were PCR-positive for erm(B) and sequence analysis of a subset of these erythromycin-resistant isolates revealed that all harbored A2075G substitutions in the 23S rRNA genes. Data fail to provide evidence for infiltration of erm(B) into erythromycin-resistant Campylobacter from commercial turkey production in this region and suggest the need for continuing surveillance.


Assuntos
Antibacterianos/farmacologia , Campylobacter coli/isolamento & purificação , Campylobacter jejuni/isolamento & purificação , Farmacorresistência Bacteriana , Perus/microbiologia , Animais , Campylobacter coli/genética , Campylobacter jejuni/genética , Eritromicina/farmacologia , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , North Carolina , RNA Ribossômico 23S/genética
10.
Int J Syst Evol Microbiol ; 67(12): 5296-5311, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29034857

RESUMO

Ongoing changes in taxonomic methods, and in the rapid development of the taxonomic structure of species assigned to the Epsilonproteobacteria have lead the International Committee of Systematic Bacteriology Subcommittee on the Taxonomy of Campylobacter and Related Bacteria to discuss significant updates to previous minimal standards for describing new species of Campylobacteraceae and Helicobacteraceae. This paper is the result of these discussions and proposes minimum requirements for the description of new species belonging to the families Campylobacteraceae and Helicobacteraceae, thus including species in Campylobacter, Arcobacter, Helicobacter, and Wolinella. The core underlying principle remains the use of appropriate phenotypic and genotypic methods to characterise strains sufficiently so as to effectively and unambiguously determine their taxonomic position in these families, and provide adequate means by which the new taxon can be distinguished from extant species and subspecies. This polyphasic taxonomic approach demands the use of appropriate reference data for comparison to ensure the novelty of proposed new taxa, and the recommended study of at least five strains to enable species diversity to be assessed. Methodological approaches for phenotypic and genotypic (including whole-genome sequence comparisons) characterisation are recommended.


Assuntos
Arcobacter/classificação , Técnicas de Tipagem Bacteriana/normas , Campylobacter/classificação , Helicobacter/classificação , Wolinella/classificação , Campylobacteraceae , Helicobacteraceae
11.
Int J Syst Evol Microbiol ; 67(6): 1961-1968, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28629508

RESUMO

During independent diagnostic screenings of otariid seals in California (USA) and phocid seals in Scotland (UK), Campylobacter-like isolates, which differed from the established taxa of the genus Campylobacter, were cultured from abscesses and internal organs of different seal species. A polyphasic study was undertaken to determine the taxonomic position of these six isolates. The isolates were characterized by 16S rRNA gene and AtpA sequence analysis and by conventional phenotypic testing. The whole-genome sequences were determined for all isolates, and the average nucleotide identity (ANI) was determined. The isolates formed a separate phylogenetic clade, divergent from all other taxa of the genus Campylobacter and most closely related to Campylobactermucosalis. Although all isolates showed 100 % 16S rRNA gene sequence homology, AtpA and ANI analyses indicated divergence between the otariid isolates from California and the phocid isolates from Scotland, which warrants subspecies status for each clade. The two subspecies could also be distinguished phenotypically on the basis of catalase activity. This study shows clearly that the isolates obtained from pinnipeds represent a novel species within the genus Campylobacter, for which the name Campylobacter pinnipediorum sp. nov. is proposed. Within this novel species, the Californian isolates represent a separate subspecies, for which the name C. pinnipediorum subsp. pinnipediorum subsp. nov. is proposed. The type strain for both this novel species and subspecies is RM17260T (=LMG 29472T=CCUG 69570T). The Scottish isolates represent another subspecies, for which the name C. pinnipediorum subsp. caledonicus subsp. nov. is proposed. The type strain of this subspecies is M302/10/6T (=LMG 29473T=CCUG 68650T).


Assuntos
Campylobacter/classificação , Caniformia/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , California , Campylobacter/genética , Campylobacter/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Escócia , Análise de Sequência de DNA
13.
BMC Genomics ; 17: 713, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27599479

RESUMO

BACKGROUND: Campylobacter fetus (C. fetus) can cause disease in both humans and animals. C. fetus has been divided into three subspecies: C. fetus subsp. fetus (Cff), C. fetus subsp. venerealis (Cfv) and C. fetus subsp. testudinum (Cft). Subspecies identification of mammal-associated C. fetus strains is crucial in the control of Bovine Genital Campylobacteriosis (BGC), a syndrome associated with Cfv. The prescribed methods for subspecies identification of the Cff and Cfv isolates are: tolerance to 1 % glycine and H2S production. RESULTS: In this study, we observed the deletion of a putative cysteine transporter in the Cfv strains, which are not able to produce H2S from L-cysteine. Phylogenetic reconstruction of the core genome single nucleotide polymorphisms (SNPs) within Cff and Cfv strains divided these strains into five different clades and showed that the Cfv clade and a Cff clade evolved from a single Cff ancestor. CONCLUSIONS: Multiple C. fetus clades were observed, which were not consistent with the biochemical differentiation of the strains. This suggests the need for a closer evaluation of the current C. fetus subspecies differentiation, considering that the phenotypic differentiation is still applied in BGC control programs.


Assuntos
Campylobacter fetus/classificação , Genoma Bacteriano , Sulfeto de Hidrogênio/metabolismo , Análise de Sequência de DNA/métodos , Proteínas de Bactérias/genética , Campylobacter fetus/genética , Campylobacter fetus/fisiologia , Cisteína/metabolismo , Evolução Molecular , Deleção de Genes , Tamanho do Genoma , Filogenia , Polimorfismo de Nucleotídeo Único
14.
Int J Syst Evol Microbiol ; 65(Pt 3): 975-982, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25574036

RESUMO

During sampling of reptiles for members of the class Epsilonproteobacteria, strains representing a member of the genus Campylobacter not belonging to any of the established taxa were isolated from lizards and chelonians. Initial amplified fragment length polymorphism, PCR and 16S rRNA sequence analysis showed that these strains were most closely related to Campylobacter fetus and Campylobacter hyointestinalis. A polyphasic study was undertaken to determine the taxonomic position of five strains. The strains were characterized by 16S rRNA and atpA sequence analysis, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and conventional phenotypic testing. Whole-genome sequences were determined for strains 1485E(T) and 2463D, and the average nucleotide and amino acid identities were determined for these strains. The strains formed a robust phylogenetic clade, divergent from all other species of the genus Campylobacter. In contrast to most currently known members of the genus Campylobacter, the strains showed growth at ambient temperatures, which might be an adaptation to their reptilian hosts. The results of this study clearly show that these strains isolated from reptiles represent a novel species within the genus Campylobacter, for which the name Campylobacter iguaniorum sp. nov. is proposed. The type strain is 1485E(T) ( = LMG 28143(T) = CCUG 66346(T)).


Assuntos
Campylobacter/classificação , Filogenia , Répteis/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Genes Bacterianos , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
J Clin Microbiol ; 52(12): 4183-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25232170

RESUMO

Classifications of the Campylobacter fetus subspecies fetus and venerealis were first described in 1959 and were based on the source of isolation (intestinal versus genital) and the ability of the strains to proliferate in the genital tract of cows. Two phenotypic assays (1% glycine tolerance and H2S production) were described to differentiate the subspecies. Multiple molecular assays have been applied to differentiate the C. fetus subspecies, but none of these tests is consistent with the phenotypic identification methods. In this study, we defined the core genome and accessory genes of C. fetus, which are based on the closed genomes of five C. fetus strains. Phylogenetic analysis of the core genomes of 23 C. fetus strains of the two subspecies showed a division into two clusters. The phylogenetic core genome clusters were not consistent with the phenotypic classifications of the C. fetus subspecies. However, they were consistent with the molecular characteristics of the strains, which were determined by multilocus sequence typing, sap typing, and the presence/absence of insertion sequences and a type I restriction modification system. The similarity of the genome characteristics of three of the phenotypically defined C. fetus subsp. fetus strains to C. fetus subsp. venerealis strains, when considering the core genome and accessory genes, requires a critical evaluation of the clinical relevance of C. fetus subspecies identification by phenotypic assays.


Assuntos
Técnicas Bacteriológicas/métodos , Infecções por Campylobacter/veterinária , Campylobacter fetus/classificação , Campylobacter fetus/isolamento & purificação , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/microbiologia , Animais , Infecções por Campylobacter/diagnóstico , Campylobacter fetus/genética , Campylobacter fetus/fisiologia , Bovinos , Análise por Conglomerados , DNA Bacteriano/genética , Genoma Bacteriano , Genótipo , Tipagem Molecular , Fenótipo , Filogenia
16.
Int J Syst Evol Microbiol ; 64(Pt 9): 2944-2948, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24899653

RESUMO

A polyphasic study was undertaken to determine the taxonomic position of 13 Campylobacter fetus-like strains from humans (n = 8) and reptiles (n = 5). The results of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS and genomic data from sap analysis, 16S rRNA gene and hsp60 sequence comparison, pulsed-field gel electrophoresis, amplified fragment length polymorphism analysis, DNA-DNA hybridization and whole genome sequencing demonstrated that these strains are closely related to C. fetus but clearly differentiated from recognized subspecies of C. fetus. Therefore, this unique cluster of 13 strains represents a novel subspecies within the species C. fetus, for which the name Campylobacter fetus subsp. testudinum subsp. nov. is proposed, with strain 03-427(T) ( = ATCC BAA-2539(T) = LMG 27499(T)) as the type strain. Although this novel taxon could not be differentiated from C. fetus subsp. fetus and C. fetus subsp. venerealis using conventional phenotypic tests, MALDI-TOF MS revealed the presence of multiple phenotypic biomarkers which distinguish Campylobacter fetus subsp. testudinum subsp. nov. from recognized subspecies of C. fetus.


Assuntos
Campylobacter fetus/classificação , Filogenia , Répteis/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Técnicas de Tipagem Bacteriana , Campylobacter fetus/genética , Campylobacter fetus/isolamento & purificação , DNA Bacteriano/genética , Humanos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Mol Cell Proteomics ; 11(11): 1203-19, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22859570

RESUMO

The foodborne bacterial pathogen, Campylobacter jejuni, possesses an N-linked protein glycosylation (pgl) pathway involved in adding conserved heptasaccharides to asparagine-containing motifs of >60 proteins, and releasing the same glycan into its periplasm as free oligosaccharides. In this study, comparative genomics of all 30 fully sequenced Campylobacter taxa revealed conserved pgl gene clusters in all but one species. Structural, phylogenetic and immunological studies showed that the N-glycosylation systems can be divided into two major groups. Group I includes all thermotolerant taxa, capable of growth at the higher body temperatures of birds, and produce the C. jejuni-like glycans. Within group I, the niche-adapted C. lari subgroup contain the smallest genomes among the epsilonproteobacteria, and are unable to glucosylate their pgl pathway glycans potentially reminiscent of the glucosyltransferase regression observed in the O-glycosylation system of Neisseria species. The nonthermotolerant Campylobacters, which inhabit a variety of hosts and niches, comprise group II and produce an unexpected diversity of N-glycan structures varying in length and composition. This includes the human gut commensal, C. hominis, which produces at least four different N-glycan structures, akin to the surface carbohydrate diversity observed in the well-studied commensal, Bacteroides. Both group I and II glycans are immunogenic and cell surface exposed, making these structures attractive targets for vaccine design and diagnostics.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter/metabolismo , Redes e Vias Metabólicas , Sequência de Aminoácidos , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Campylobacter/classificação , Campylobacter/genética , Campylobacter/imunologia , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Soros Imunes/imunologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Oligossacarídeos/química , Oligossacarídeos/imunologia , Filogenia , Polissacarídeos/imunologia , Reprodutibilidade dos Testes
18.
Microorganisms ; 12(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38399730

RESUMO

Campylobacter jejuni and Campylobacter coli are well known for their natural competence, i.e., their capacity for the uptake of naked DNA with subsequent transformation. This study identifies non-transformable C. jejuni and C. coli strains from domestic animals and employs genomic analysis to investigate the strain genotypes and their associated genetic mechanisms. The results reveal genetic associations leading to a non-transformable state, including functional DNase genes from bacteriophages and mutations within the cts-encoded DNA-uptake system, which impact the initial steps of the DNA uptake during natural transformation. Interestingly, all 38 tested C. jejuni ST-50 strains from the United States exhibit a high prevalence of non-transformability, and the strains harbor a variety of these genetic markers. This research emphasizes the role of these genetic markers in hindering the transfer of antimicrobial resistance (AMR) determinants, providing valuable insights into the genetic diversity of Campylobacter. As ST-50 is a major clone of C. jejuni globally, we additionally determined the prevalence of the genetic markers for non-transformability among C. jejuni ST-50 from different regions of the world, revealing distinct patterns of evolution and a strong selective pressure on the loss of competence in ST-50 strains, particularly in the agricultural environment in the United States. Our findings contribute to a comprehensive understanding of genetic exchange mechanisms within Campylobacter strains, and their implications for antimicrobial resistance dissemination and evolutionary pathways within specific lineages.

19.
J Clin Microbiol ; 51(1): 195-201, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115263

RESUMO

We describe using major outer membrane protein (MOMP) typing as a screen to compare the Campylobacter jejuni porA gene sequences of clinical outbreak strains from human stool with the porA sequences of dairy farm strains isolated during two milk-borne campylobacteriosis outbreak investigations in California. The genetic relatedness of clinical and environmental strains with identical or closely related porA sequences was confirmed by multilocus sequence typing and pulsed-field gel electrophoresis analysis. The first outbreak involved 1,644 C. jejuni infections at 11 state correctional facilities and was associated with consumption of pasteurized milk supplied by an on-site dairy (dairy A) at a prison in the central valley. The second outbreak involved eight confirmed and three suspect C. jejuni cases linked to consumption of commercial raw milk and raw chocolate colostrum at another central valley dairy (dairy B). Both dairies bottled fluid milk on the farm and distributed the finished product to off-site locations. Altogether, C. jejuni was isolated from 7 of 15 (46.7%) bovine fecal, 12 of 20 (60%) flush alley water, and 1 of 20 (5%) lagoon samples collected on dairy A. At dairy B, C. jejuni was cultured from 9 of 26 (34.6%) bovine fecal samples. Environmental strains indistinguishable from the clinical outbreak strains were found in five flush alley water samples (dairy A) and four bovine fecal samples (dairy B). The findings demonstrate that MOMP typing is a useful tool to triage environmental isolates prior to conducting more labor-intensive molecular typing methods.


Assuntos
Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/classificação , Campylobacter jejuni/genética , Doenças Transmitidas por Alimentos/microbiologia , Porinas/genética , Animais , California/epidemiologia , Infecções por Campylobacter/epidemiologia , Campylobacter jejuni/isolamento & purificação , Bovinos , DNA Bacteriano/química , DNA Bacteriano/genética , Surtos de Doenças , Eletroforese em Gel de Campo Pulsado , Microbiologia Ambiental , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Epidemiologia Molecular/métodos , Dados de Sequência Molecular , Tipagem de Sequências Multilocus
20.
Mol Ecol ; 22(4): 1051-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23279096

RESUMO

Hybridization between distantly related organisms can facilitate rapid adaptation to novel environments, but is potentially constrained by epistatic fitness interactions among cell components. The zoonotic pathogens Campylobacter coli and C. jejuni differ from each other by around 15% at the nucleotide level, corresponding to an average of nearly 40 amino acids per protein-coding gene. Using whole genome sequencing, we show that a single C. coli lineage, which has successfully colonized an agricultural niche, has been progressively accumulating C. jejuni DNA. Members of this lineage belong to two groups, the ST-828 and ST-1150 clonal complexes. The ST-1150 complex is less frequently isolated and has undergone a substantially greater amount of introgression leading to replacement of up to 23% of the C. coli core genome as well as import of novel DNA. By contrast, the more commonly isolated ST-828 complex bacteria have 10-11% introgressed DNA, and C. jejuni and nonagricultural C. coli lineages each have <2%. Thus, the C. coli that colonize agriculture, and consequently cause most human disease, have hybrid origin, but this cross-species exchange has so far not had a substantial impact on the gene pools of either C. jejuni or nonagricultural C. coli. These findings also indicate remarkable interchangeability of basic cellular machinery after a prolonged period of independent evolution.


Assuntos
Campylobacter coli/genética , Campylobacter jejuni/genética , Evolução Molecular , Genoma Bacteriano , Hibridização Genética , Campylobacter coli/isolamento & purificação , Campylobacter jejuni/isolamento & purificação , DNA Bacteriano/genética , Funções Verossimilhança , Modelos Genéticos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA