RESUMO
This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.
Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Consenso , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cabeça , Imageamento por Ressonância Magnética/métodos , Algoritmos , Mapeamento Encefálico/métodosRESUMO
PURPOSE: QSM outside the brain has recently gained interest, particularly in the abdominal region. However, the absence of reliable ground truths makes difficult to assess reconstruction algorithms, whose quality is already compromised by additional signal contributions from fat, gases, and different kinds of motion. This work presents a realistic in silico phantom for the development, evaluation and comparison of abdominal QSM reconstruction algorithms. METHODS: Synthetic susceptibility and R 2 * $$ {R}_2^{\ast } $$ maps were generated by segmenting and postprocessing the abdominal 3T MRI data from a healthy volunteer. Susceptibility and R 2 * $$ {R}_2^{\ast } $$ values in different tissues/organs were assigned according to literature and experimental values and were also provided with realistic textures. The signal was simulated using as input the synthetic QSM and R 2 * $$ {R}_2^{\ast } $$ maps and fat contributions. Three susceptibility scenarios and two acquisition protocols were simulated to compare different reconstruction algorithms. RESULTS: QSM reconstructions show that the phantom allows to identify the main strengths and limitations of the acquisition approaches and reconstruction algorithms, such as in-phase acquisitions, water-fat separation methods, and QSM dipole inversion algorithms. CONCLUSION: The phantom showed its potential as a ground truth to evaluate and compare reconstruction pipelines and algorithms. The publicly available source code, designed in a modular framework, allows users to easily modify the susceptibility, R 2 * $$ {R}_2^{\ast } $$ and TEs, and thus creates different abdominal scenarios.
Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Abdome/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , AlgoritmosRESUMO
PURPOSE: Susceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a regularization term. The data-consistency term measures the difference between the desired solution and the measured data using typically the L2-norm. It has been proposed to replace this L2-norm with the L1-norm, due to its robustness to outliers and reduction of streaking artifacts arising from highly noisy or strongly perturbed regions. However, in regions with high SNR, the L1-norm yields a suboptimal denoising performance. In this work, we present a hybrid data fidelity approach that uses the L1-norm and subsequently the L2-norm to exploit the strengths of both norms. METHODS: We developed a hybrid data fidelity term approach for QSM (HD-QSM) based on linear susceptibility inversion methods, with total variation regularization. Each functional is solved with ADMM. The HD-QSM approach is a two-stage method that first finds a fast solution of the L1-norm functional and then uses this solution to initialize the L2-norm functional. In both norms we included spatially variable weights that improve the quality of the reconstructions. RESULTS: The HD-QSM approach produced good quantitative reconstructions in terms of structural definition, noise reduction, and avoiding streaking artifacts comparable with nonlinear methods, but with higher computational efficiency. Reconstructions performed with this method achieved first place at the lowest RMS error category in stage 1 of the 2019 QSM Reconstruction Challenge. CONCLUSIONS: The proposed method allows robust and accurate QSM reconstructions, obtaining superior performance to state-of-the-art methods.
Assuntos
Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodosRESUMO
PURPOSE: The presence of dipole-inconsistent data due to substantial noise or artifacts causes streaking artifacts in quantitative susceptibility mapping (QSM) reconstructions. Often used Bayesian approaches rely on regularizers, which in turn yield reduced sharpness. To overcome this problem, we present a novel L1-norm data fidelity approach that is robust with respect to outliers, and therefore prevents streaking artifacts. METHODS: QSM functionals are solved with linear and nonlinear L1-norm data fidelity terms using functional augmentation, and are compared with equivalent L2-norm methods. Algorithms were tested on synthetic data, with phase inconsistencies added to mimic lesions, QSM Challenge 2.0 data, and in vivo brain images with hemorrhages. RESULTS: The nonlinear L1-norm-based approach achieved the best overall error metric scores and better streaking artifact suppression. Notably, L1-norm methods could reconstruct QSM images without using a brain mask, with similar regularization weights for different data fidelity weighting or masking setups. CONCLUSION: The proposed L1-approach provides a robust method to prevent streaking artifacts generated by dipole-inconsistent data, renders brain mask calculation unessential, and opens novel challenging clinical applications such asassessing brain hemorrhages and cortical layers.
Assuntos
Artefatos , Mapeamento Encefálico , Algoritmos , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância MagnéticaRESUMO
PURPOSE: The aim of the second quantitative susceptibility mapping (QSM) reconstruction challenge (Oct 2019, Seoul, Korea) was to test the accuracy of QSM dipole inversion algorithms in simulated brain data. METHODS: A two-stage design was chosen for this challenge. The participants were provided with datasets of multi-echo gradient echo images synthesized from two realistic in silico head phantoms using an MR simulator. At the first stage, participants optimized QSM reconstructions without ground truth data available to mimic the clinical setting. At the second stage, ground truth data were provided for parameter optimization. Submissions were evaluated using eight numerical metrics and visual ratings. RESULTS: A total of 98 reconstructions were submitted for stage 1 and 47 submissions for stage 2. Iterative methods had the best quantitative metric scores, followed by deep learning and direct inversion methods. Priors derived from magnitude data improved the metric scores. Algorithms based on iterative approaches and total variation (and its derivatives) produced the best overall results. The reported results and analysis pipelines have been made public to allow researchers to compare new methods to the current state of the art. CONCLUSION: The synthetic data provide a consistent framework to test the accuracy and robustness of QSM algorithms in the presence of noise, calcifications and minor voxel dephasing effects. Total Variation-based algorithms produced the best results among all metrics. Future QSM challenges should assess whether this good performance with synthetic datasets translates to more realistic scenarios, where background fields and dipole-incompatible phase contributions are included.
Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento EncefálicoRESUMO
PURPOSE: Quantitative Susceptibility Mapping (QSM) is usually performed by minimizing a functional with data fidelity and regularization terms. A weighting parameter controls the balance between these terms. There is a need for techniques to find the proper balance that avoids artifact propagation and loss of details. Finding the point of maximum curvature in the L-curve is a popular choice, although it is slow, often unreliable when using variational penalties, and has a tendency to yield overregularized results. METHODS: We propose 2 alternative approaches to control the balance between the data fidelity and regularization terms: 1) searching for an inflection point in the log-log domain of the L-curve, and 2) comparing frequency components of QSM reconstructions. We compare these methods against the conventional L-curve and U-curve approaches. RESULTS: Our methods achieve predicted parameters that are better correlated with RMS error, high-frequency error norm, and structural similarity metric-based parameter optimizations than those obtained with traditional methods. The inflection point yields less overregularization and lower errors than traditional alternatives. The frequency analysis yields more visually appealing results, although with larger RMS error. CONCLUSION: Our methods provide a robust parameter optimization framework for variational penalties in QSM reconstruction. The L-curve-based zero-curvature search produced almost optimal results for typical QSM acquisition settings. The frequency analysis method may use a 1.5 to 2.0 correction factor to apply it as a stand-alone method for a wider range of signal-to-noise-ratio settings. This approach may also benefit from fast search algorithms such as the binary search to speed up the process.
Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Razão Sinal-RuídoRESUMO
PURPOSE: To create a realistic in silico head phantom for the second QSM reconstruction challenge and for future evaluations of processing algorithms for QSM. METHODS: We created a digital whole-head tissue property phantom by segmenting and postprocessing high-resolution (0.64 mm isotropic), multiparametric MRI data acquired at 7 T from a healthy volunteer. We simulated the steady-state magnetization at 7 T using a Bloch simulator and mimicked a Cartesian sampling scheme through Fourier-based processing. Computer code for generating the phantom and performing the MR simulation was designed to facilitate flexible modifications of the phantom in the future, such as the inclusion of pathologies as well as the simulation of a wide range of acquisition protocols. Specifically, the following parameters and effects were implemented: TR and TE, voxel size, background fields, and RF phase biases. Diffusion-weighted imaging phantom data are provided, allowing future investigations of tissue-microstructure effects in phase and QSM algorithms. RESULTS: The brain part of the phantom featured realistic morphology with spatial variations in relaxation and susceptibility values similar to the in vivo setting. We demonstrated some of the phantom's properties, including the possibility of generating phase data with nonlinear evolution over TE due to partial-volume effects or complex distributions of frequency shifts within the voxel. CONCLUSION: The presented phantom and computer programs are publicly available and may serve as a ground truth in future assessments of the faithfulness of quantitative susceptibility reconstruction algorithms.
Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Cabeça/diagnóstico por imagem , Humanos , Imagens de FantasmasRESUMO
PURPOSE: The 4th International Workshop on MRI Phase Contrast and QSM (2016, Graz, Austria) hosted the first QSM Challenge. A single-orientation gradient recalled echo acquisition was provided, along with COSMOS and the χ33 STI component as ground truths. The submitted solutions differed more than expected depending on the error metric used for optimization and were generally over-regularized. This raised (unanswered) questions about the ground truths and the metrics utilized. METHODS: We investigated the influence of background field remnants by applying additional filters. We also estimated the anisotropic contributions from the STI tensor to the apparent susceptibility to amend the χ33 ground truth and to investigate the impact on the reconstructions. Lastly, we used forward simulations from the COSMOS reconstruction to investigate the impact noise had on the metric scores. RESULTS: Reconstructions compared against the amended STI ground truth returned lower errors. We show that the background field remnants had a minor impact in the errors. In the absence of inconsistencies, all metrics converged to the same regularization weights, whereas structural similarity index metric was more insensitive to such inconsistencies. CONCLUSION: There was a mismatch between the provided data and the ground truths due to the presence of unaccounted anisotropic susceptibility contributions and noise. Given the lack of reliable ground truths when using in vivo acquisitions, simulations are suggested for future QSM Challenges.
Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Encéfalo , Imageamento por Ressonância Magnética , Reprodutibilidade dos TestesRESUMO
High-quality Quantitative Susceptibility Mapping (QSM) with Nonlinear Dipole Inversion (NDI) is developed with pre-determined regularization while matching the image quality of state-of-the-art reconstruction techniques and avoiding over-smoothing that these techniques often suffer from. NDI is flexible enough to allow for reconstruction from an arbitrary number of head orientations and outperforms COSMOS even when using as few as 1-direction data. This is made possible by a nonlinear forward-model that uses the magnitude as an effective prior, for which we derived a simple gradient descent update rule. We synergistically combine this physics-model with a Variational Network (VN) to leverage the power of deep learning in the VaNDI algorithm. This technique adopts the simple gradient descent rule from NDI and learns the network parameters during training, hence requires no additional parameter tuning. Further, we evaluate NDI at 7 T using highly accelerated Wave-CAIPI acquisitions at 0.5 mm isotropic resolution and demonstrate high-quality QSM from as few as 2-direction data.
Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Dinâmica não Linear , Artefatos , Humanos , Processamento de Imagem Assistida por ComputadorRESUMO
PURPOSE: Background-field removal is a crucial preprocessing step for quantitative susceptibility mapping (QSM). Remnants from this step often contaminate the estimated local field, which in turn leads to erroneous tissue-susceptibility reconstructions. The present work aimed to mitigate this undesirable behavior with the development of a new approach that simultaneously decouples background contributions and local susceptibility sources on QSM inversion. METHODS: Input phase data for QSM can be seen as a composite scalar field of local effects and residual background components. We developed a new weak-harmonic regularizer to constrain the latter and to separate the 2 components. The resulting optimization problem was solved with the alternating directions of multipliers method framework to achieve fast convergence. In addition, for convenience, a new alternating directions of multipliers method-based preconditioned nonlinear projection onto dipole fields solver was developed to enable initializations with wrapped-phase distributions. Weak-harmonic QSM, with and without nonlinear projection onto dipole fields preconditioning, was compared with the original (alternating directions of multipliers method-based) total variation QSM algorithm in phantom and in vivo experiments. RESULTS: Weak-harmonic QSM returned improved reconstructions regardless of the method used for background-field removal, although the proposed nonlinear projection onto dipole fields method often obtained better results. Streaking and shadowing artifacts were substantially suppressed, and residual background components were effectively removed. CONCLUSION: Weak-harmonic QSM with field preconditioning is a robust dipole inversion technique and has the potential to be extended as a single-step formulation for initialization with uncombined multi-echo data.
Assuntos
Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Mapeamento Encefálico , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-RuídoRESUMO
Quantitative Susceptibility Mapping (QSM), best known as a surrogate for tissue iron content, is becoming a highly relevant MRI contrast for monitoring cellular and vascular status in aging, addiction, traumatic brain injury and, in general, a wide range of neurological disorders. In this study we present a new Bayesian QSM algorithm, named Multi-Scale Dipole Inversion (MSDI), which builds on the nonlinear Morphology-Enabled Dipole Inversion (nMEDI) framework, incorporating three additional features: (i) improved implementation of Laplace's equation to reduce the influence of background fields through variable harmonic filtering and subsequent deconvolution, (ii) improved error control through dynamic phase-reliability compensation across spatial scales, and (iii) scalewise use of the morphological prior. More generally, this new pre-conditioned QSM formalism aims to reduce the impact of dipole-incompatible fields and measurement errors such as flow effects, poor signal-to-noise ratio or other data inconsistencies that can lead to streaking and shadowing artefacts. In terms of performance, MSDI is the first algorithm to rank in the top-10 for all metrics evaluated in the 2016 QSM Reconstruction Challenge. It also demonstrated lower variance than nMEDI and more stable behaviour in scan-rescan reproducibility experiments for different MRI acquisitions at 3 and 7 Tesla. In the present work, we also explored new forms of susceptibility MRI contrast making explicit use of the differential information across spatial scales. Specifically, we show MSDI-derived examples of: (i) enhanced anatomical detail with susceptibility inversions from short-range dipole fields (hereby referred to as High-Pass Susceptibility Mapping or HPSM), (ii) high specificity to venous-blood susceptibilities for highly regularised HPSM (making a case for MSDI-based Venography or VenoMSDI), (iii) improved tissue specificity (and possibly statistical conditioning) for Macroscopic-Vessel Suppressed Susceptibility Mapping (MVSSM), and (iv) high spatial specificity and definition for HPSM-based Susceptibility-Weighted Imaging (HPSM-SWI) and related intensity projections.
Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Ferro , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Neuroimagem/métodos , Flebografia/métodos , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas , Flebografia/normas , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
PURPOSE: Quantitative susceptibility mapping can be performed through the minimization of a function consisting of data fidelity and regularization terms. For data consistency, a Gaussian-phase noise distribution is often assumed, which breaks down when the signal-to-noise ratio is low. A previously proposed alternative is to use a nonlinear data fidelity term, which reduces streaking artifacts, mitigates noise amplification, and results in more accurate susceptibility estimates. We hereby present a novel algorithm that solves the nonlinear functional while achieving computation speeds comparable to those for a linear formulation. METHODS: We developed a nonlinear quantitative susceptibility mapping algorithm (fast nonlinear susceptibility inversion) based on the variable splitting and alternating direction method of multipliers, in which the problem is split into simpler subproblems with closed-form solutions and a decoupled nonlinear inversion hereby solved with a Newton-Raphson iterative procedure. Fast nonlinear susceptibility inversion performance was assessed using numerical phantom and in vivo experiments, and was compared against the nonlinear morphology-enabled dipole inversion method. RESULTS: Fast nonlinear susceptibility inversion achieves similar accuracy to nonlinear morphology-enabled dipole inversion but with significantly improved computational efficiency. CONCLUSION: The proposed method enables accurate reconstructions in a fraction of the time required by state-of-the-art quantitative susceptibility mapping methods. Magn Reson Med 80:814-821, 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Humanos , Imageamento por Ressonância Magnética/instrumentação , Dinâmica não Linear , Imagens de FantasmasRESUMO
PURPOSE: The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully. METHODS: Gradient-echo images of a healthy volunteer acquired at 3T in a single orientation with 1.06 mm isotropic resolution. A reference susceptibility map was provided, which was computed using the susceptibility tensor imaging algorithm on data acquired at 12 head orientations. Susceptibility maps calculated from the single orientation data were compared against the reference susceptibility map. Deviations were quantified using the following metrics: root mean squared error (RMSE), structure similarity index (SSIM), high-frequency error norm (HFEN), and the error in selected white and gray matter regions. RESULTS: Twenty-seven submissions were evaluated. Most of the best scoring approaches estimated the spatial frequency content in the ill-conditioned domain of the dipole kernel using compressed sensing strategies. The top 10 maps in each category had similar error metrics but substantially different visual appearance. CONCLUSION: Because QSM algorithms were optimized to minimize error metrics, the resulting susceptibility maps suffered from over-smoothing and conspicuity loss in fine features such as vessels. As such, the challenge highlighted the need for better numerical image quality criteria. Magn Reson Med 79:1661-1673, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Feminino , HumanosRESUMO
BACKGROUND: Calcium (Ca2+) propagates within tissues serving as an important information carrier. In particular, cilia beat frequency in oviduct cells is partially regulated by Ca2+ changes. Thus, measuring the calcium density and characterizing the traveling wave plays a key role in understanding biological phenomena. However, current methods to measure propagation velocities and other wave characteristics involve several manual or time-consuming procedures. This limits the amount of information that can be extracted, and the statistical quality of the analysis. RESULTS: Our work provides a framework based on image processing procedures that enables a fast, automatic and robust characterization of data from two-filter fluorescence Ca2+ experiments. We calculate the mean velocity of the wave-front, and use theoretical models to extract meaningful parameters like wave amplitude, decay rate and time of excitation. CONCLUSIONS: Measurements done by different operators showed a high degree of reproducibility. This framework is also extended to a single filter fluorescence experiments, allowing higher sampling rates, and thus an increased accuracy in velocity measurements.
Assuntos
Sinalização do Cálcio , Cálcio/análise , Processamento de Imagem Assistida por Computador/métodos , Animais , Calibragem , Células Cultivadas , Processamento de Imagem Assistida por Computador/normas , Microscopia de Fluorescência , Ratos , Reprodutibilidade dos TestesRESUMO
This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting.
RESUMO
BACKGROUND: Psychosis is related to neurochemical changes in deep-brain nuclei, particularly suggesting dopamine dysfunctions. We used an magnetic resonance imaging-based technique called quantitative susceptibility mapping (QSM) to study these regions in psychosis. QSM quantifies magnetic susceptibility in the brain, which is associated with iron concentrations. Since iron is a cofactor in dopamine pathways and co-localizes with inhibitory neurons, differences in QSM could reflect changes in these processes. METHODS: We scanned 83 patients with first-episode psychosis and 64 healthy subjects. We reassessed 22 patients and 21 control subjects after 3 months. Mean susceptibility was measured in 6 deep-brain nuclei. Using linear mixed models, we analyzed the effect of case-control differences, region, age, gender, volume, framewise displacement (FD), treatment duration, dose, laterality, session, and psychotic symptoms on QSM. RESULTS: Patients showed a significant susceptibility reduction in the putamen and globus pallidus externa (GPe). Patients also showed a significant R2* reduction in GPe. Age, gender, FD, session, group, and region are significant predictor variables for QSM. Dose, treatment duration, and volume were not predictor variables of QSM. CONCLUSIONS: Reduction in QSM and R2* suggests a decreased iron concentration in the GPe of patients. Susceptibility reduction in putamen cannot be associated with iron changes. Since changes observed in putamen and GPe were not associated with symptoms, dose, and treatment duration, we hypothesize that susceptibility may be a trait marker rather than a state marker, but this must be verified with long-term studies.
Assuntos
Dopamina , Transtornos Psicóticos , Humanos , Encéfalo/metabolismo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Ferro/metabolismo , Transtornos Psicóticos/diagnóstico por imagemRESUMO
The susceptibility of super paramagnetic iron oxide (SPIO) particles makes them a useful contrast agent for different purposes in MRI. These particles are typically quantified with relaxometry or by measuring the inhomogeneities they produced. These methods rely on the phase, which is unreliable for high concentrations. We present in this study a novel Deep Learning method to quantify the SPIO concentration distribution. We acquired the data with a new sequence called View Line in which the field map information is encoded in the geometry of the image. The novelty of our network is that it uses residual blocks as the bottleneck and multiple decoders to improve the gradient flow in the network. Each decoder predicts a different part of the wavelet decomposition of the concentration map. This decomposition improves the estimation of the concentration, and also it accelerates the convergence of the model. We tested our SPIO concentration reconstruction technique with simulated images and data from actual scans from phantoms. The simulations were done using images from the IXI dataset, and the phantoms consisted of plastic cylinders containing agar with SPIO particles at different concentrations. In both experiments, the model was able to quantify the distribution accurately.
Assuntos
Aprendizado Profundo , Algoritmos , Compostos Férricos , Imageamento por Ressonância MagnéticaRESUMO
PURPOSE: Most approaches for quantitative susceptibility mapping (QSM) are based on a forward model approximation that employs a continuous Fourier transform operator to solve a differential equation system. Such formulation, however, is prone to high-frequency aliasing. The aim of this study was to reduce such errors using an alternative dipole kernel formulation based on the discrete Fourier transform and discrete operators. METHODS: The impact of such an approach on forward model calculation and susceptibility inversion was evaluated in contrast to the continuous formulation both with synthetic phantoms and in vivo MRI data. RESULTS: The discrete kernel demonstrated systematically better fits to analytic field solutions, and showed less over-oscillations and aliasing artifacts while preserving low- and medium-frequency responses relative to those obtained with the continuous kernel. In the context of QSM estimation, the use of the proposed discrete kernel resulted in error reduction and increased sharpness. CONCLUSION: This proof-of-concept study demonstrated that discretizing the dipole kernel is advantageous for QSM. The impact on small or narrow structures such as the venous vasculature might by particularly relevant to high-resolution QSM applications with ultra-high field MRI - a topic for future investigations. The proposed dipole kernel has a straightforward implementation to existing QSM routines.
Assuntos
Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Adulto , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Feminino , Análise de Elementos Finitos , Análise de Fourier , Humanos , Angiografia por Ressonância Magnética/instrumentação , Angiografia por Ressonância Magnética/métodos , Computação Matemática , Flebografia/instrumentação , Flebografia/métodos , Imagem Corporal Total/instrumentação , Imagem Corporal Total/métodosRESUMO
PURPOSE: The structural similarity index measure (SSIM) has become a popular quality metric to evaluate QSM in a way that is closer to human perception than RMS error (RMSE). However, SSIM may overpenalize errors in diamagnetic tissues and underpenalize them in paramagnetic tissues, resulting in biasing. In addition, extreme artifacts may compress the dynamic range, resulting in unrealistically high SSIM scores (hacking). To overcome biasing and hacking, we propose XSIM: SSIM implemented in the native QSM range, and with internal parameters optimized for QSM. METHODS: We used forward simulations from a COSMOS ground-truth brain susceptibility map included in the 2016 QSM Reconstruction Challenge to investigate the effect of QSM reconstruction errors on the SSIM, XSIM, and RMSE metrics. We also used these metrics to optimize QSM reconstructions of the in vivo challenge data set. We repeated this experiment with the QSM abdominal phantom. To validate the use of XSIM instead of SSIM for QSM quality assessment across a range of different reconstruction techniques/algorithms, we analyzed the reconstructions submitted to the 2019 QSM Reconstruction Challenge 2.0. RESULTS: Our experiments confirmed the biasing and hacking effects on the SSIM metric applied to QSM. The XSIM metric was robust to those effects, penalizing the presence of streaking artifacts and reconstruction errors. Using XSIM to optimize QSM reconstruction regularization weights returned less overregularization than SSIM and RMSE. CONCLUSION: XSIM is recommended over traditional SSIM to evaluate QSM reconstructions against a known ground truth, as it avoids biasing and hacking effects and provides a larger dynamic range of scores.