Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Langmuir ; 40(33): 17170-17189, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39132874

RESUMO

The article summarizes the results of our research on the behavior of ions at uncharged fluid interfaces, with a focus on moderately to highly concentrated aqueous electrolytes. The ion-specific properties of such interfaces have been analyzed. The ion-specificity series are different for water|air and water|oil; different for surface tension σ, surface Δχ potential and electrolyte adsorption, and they change with concentration. A methodology has been developed that allows to disentangle the multiple factors controlling the ion order. The direct ion-surface interactions are not always the most significant factor behind the observed ion sequences: indirect effects stemming from conjugate bulk properties are often more important. For example, the order of the surface tension with the nature of the anion (σKOH > σKCl > σKNO3 for potassium salts) is often the result of bulk nonideality and follows the order of the bulk activity coefficients (γKOH > γKCl > γKNO3) rather than that of a specific ion-surface interaction potential. The surface Δχ potential of aqueous solutions is, in many cases, insensitive to the ion distribution in the electric double layer but reflects the orientation of water at the surface, through the ion-specific dielectric permittivity ε of the solution. Even the sign of Δχ is often the result of the decrement of ε in the presence of electrolyte. A whole new level of complexity appears when the ions interact with an uncharged surfactant monolayer. A method has been developed to measure the electrolyte adsorption isotherms on monolayers of varying area per surfactant molecule via a combination of experiments-compression isotherms and surface pressure of equilibrium spread monolayers. The obtained isotherms demonstrate that the ions exhibit a maximum in their adsorption on monolayers of intermediate density. The maximum is explained with the interplay between ion-surfactant complexation, volume exclusion and osmotic effects.

2.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731451

RESUMO

A novel second-generation blue fluorescent polyamidoamine dendrimer peripherally modified with sixteen 4-N,N-dimethylaninoethyloxy-1,8-naphthalimide units was synthesized. Its basic photophysical characteristics were investigated in organic solvents of different polarity. It was found that in these solvents, the dendrimer is colorless and emitted blue fluorescence with different intensities depending on their polarity. The effect of the pH of the medium on the fluorescence intensity was investigated and it was found that in the acidic medium, the fluorescence is intense and is quenched in the alkaline medium. The ability of the dendrimer to detect metal ions (Pb2+, Zn2+, Mg2+, Sn2+, Ba2+, Ni2+, Sn2+, Mn2+, Co2+, Fe3+, and Al3+) was also investigated, and it was found that in the presence of Fe3+, the fluorescent intensity was amplified more than 66 times. The antimicrobial activity of the new compound has been tested in vitro against Gram-positive B. cereus and Gram-negative P. aeruginosa. The tests were performed in the dark and after irradiation with visible light. The antimicrobial activity of the compound enhanced after light irradiation and B. cereus was found slightly more sensitive than P. aeruginosa. The increase in antimicrobial activity after light irradiation is due to the generation of singlet oxygen particles, which attack bacterial cell membranes.


Assuntos
Dendrímeros , Testes de Sensibilidade Microbiana , Naftalimidas , Poliaminas , Naftalimidas/química , Naftalimidas/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Poliaminas/química , Poliaminas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fluorescência , Pseudomonas aeruginosa/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Bacillus cereus/efeitos dos fármacos , Luz , Corantes Fluorescentes/química , Espectrometria de Fluorescência
3.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611701

RESUMO

Amphiphilic fluorocarbon substances are a trending topic of research due to their wide range of applications accompanied by an alarming environmental and health impact. In order to predict their fate in the environment, use them more economically, develop new water treatment methods, etc., a better understanding of their physicochemical behavior is required. Their hydrophobicity in water/oil systems is particularly sensitive to one key thermodynamic parameter: the free energy of transfer of a perfluoromethylene group from oil to water. However, for the -CF2- moiety, the transfer energy values reported in the literature vary by more than ±25%. Due to the exponential relationship between this energy and the adsorption constants or the partition coefficients, such an uncertainty can lead to orders of magnitude error in the predicted distribution of fluorinated species. We address this problem by presenting an experimental determination of the hydrophobic effect of a -CF2- moiety with a greater certainty than currently available. The transfer energy is determined by measuring the interfacial tension of water|hexane for aqueous solutions of short-chained fluorotelomer alcohols. The obtained results for the free energy of transfer of a -CF2- moiety from oil to water are 1.68±0.02×RT0, 1.75±0.02×RT0, and 1.88±0.02×RT0 at 288.15 K, 293.15 K, and 303.15 K, respectively.

4.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373488

RESUMO

Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), short interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), have emerged as pivotal regulators within the plant kingdom [...].


Assuntos
MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Interferente Pequeno/genética
5.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675043

RESUMO

Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.


Assuntos
Agricultura Molecular , Vírus de Plantas , Animais , Humanos , Plantas Geneticamente Modificadas/metabolismo , Vacinas Sintéticas , Vírus de Plantas/genética , Anticorpos Monoclonais/metabolismo
6.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139405

RESUMO

Plants are increasingly used for the production of high-quality biological molecules for use as pharmaceuticals and biomaterials in industry. Plants have proved that they can produce life-saving therapeutic proteins (Elelyso™-Gaucher's disease treatment, ZMapp™-anti-Ebola monoclonal antibodies, seasonal flu vaccine, Covifenz™-SARS-CoV-2 virus-like particle vaccine); however, some of these therapeutic proteins are difficult to bring to market, which leads to serious difficulties for the manufacturing companies. The closure of one of the leading companies in the sector (the Canadian biotech company Medicago Inc., producer of Covifenz) as a result of the withdrawal of investments from the parent company has led to the serious question: What is hindering the exploitation of plant-made biologics to improve health outcomes? Exploring the vast potential of plants as biological factories, this review provides an updated perspective on plant-derived biologics (PDB). A key focus is placed on the advancements in plant-based expression systems and highlighting cutting-edge technologies that streamline the production of complex protein-based biologics. The versatility of plant-derived biologics across diverse fields, such as human and animal health, industry, and agriculture, is emphasized. This review also meticulously examines regulatory considerations specific to plant-derived biologics, shedding light on the disparities faced compared to biologics produced in other systems.


Assuntos
Vacinas contra Influenza , Plantas , Animais , Humanos , Canadá , Preparações Farmacêuticas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
7.
Plant Biotechnol J ; 20(7): 1363-1372, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35325498

RESUMO

We have investigated the use of transient expression to produce virus-like particles (VLPs) of severe acute respiratory syndrome coronavirus 2, the causative agent of COVID-19, in Nicotiana benthamiana. Expression of a native form of the spike (S) protein, either alone or in combination with the envelope (E) and membrane (M) proteins, all of which were directed to the plant membranes via their native sequences, was assessed. The full-length S protein, together with degradation products, could be detected in total protein extracts from infiltrated leaves in both cases. Particles with a characteristic 'crown-shaped' or 'spiky' structure could be purified by density gradient centrifugation. Enzyme-linked immunosorbent assays using anti-S antibodies showed that threefold higher levels of VLPs containing the full-length S protein were obtained by infiltration with S alone, compared to co-infiltration of S with M and E. The S protein within the VLPs could be cleaved by furin in vitro and the particles showed reactivity with serum from recovering COVID-19 patients, but not with human serum taken before the pandemic. These studies show that the native S protein expressed in plants has biological properties similar to those of the parent virus. We show that the approach undertaken is suitable for the production of VLPs from emerging strains and we anticipate that the material will be suitable for functional studies of the S protein, including the assessment of the effects of specific mutations. As the plant-made material is noninfectious, it does not have to be handled under conditions of high containment.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409340

RESUMO

Plant small RNAs (sRNAs) are a heterogeneous group of noncoding RNAs with a length of 20-24 nucleotides that are widely studied due to their importance as major regulators in various biological processes. sRNAs are divided into two main classes-microRNAs (miRNAs) and small interfering RNAs (siRNAs)-which differ in their biogenesis and functional pathways. Their identification and enrichment with new structural variants would not be possible without the use of various high-throughput sequencing (NGS) techniques, allowing for the detection of the total population of sRNAs in plants. Classifying sRNAs and predicting their functional role based on such high-performance datasets is a nontrivial bioinformatics task, as plants can generate millions of sRNAs from a variety of biosynthetic pathways. Over the years, many computing tools have been developed to meet this challenge. Here, we review more than 35 tools developed specifically for plant sRNAs over the past few years and explore some of their basic algorithms for performing tasks related to predicting, identifying, categorizing, and quantifying individual sRNAs in plant samples, as well as visualizing the results of these analyzes. We believe that this review will be practical for biologists who want to analyze their plant sRNA datasets but are overwhelmed by the number of tools available, thus answering the basic question of how to choose the right one for a particular study.


Assuntos
Biologia Computacional , MicroRNAs , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Plantas/genética , Plantas/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo
9.
Soft Matter ; 15(8): 1890, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30734818

RESUMO

Correction for 'Barrier kinetics of adsorption-desorption of alcohol monolayers on water under constant surface tension' by Ivan L. Minkov et al., Soft Matter, 2019, DOI: 10.1039/c8sm02076k.

10.
Soft Matter ; 15(8): 1730-1746, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30657160

RESUMO

The desorption of spread decanol and dodecanol monolayers at controlled constant surface tension is shown to proceed under mixed barrier-diffusion control; the role of the convective diffusion is also discussed. The desorption rate is measured as a function of the density of the monolayer and the temperature. The rate of barrier desorption increases as the monolayer approaches the collapse point, reaching an infinite value. The average desorption time of an adsorbed dodecanol molecule increases linearly with the area per molecule, and is phase-specific - it is higher for the liquid condensed state of the monolayer than for the liquid expanded. The desorption rate increases with temperature; the activation energy for desorption is independent of the compression and the surface phase. The increase of the intensity of convection is shown to produce a vanishingly thin diffusion layer and causes the desorption to proceed under pure barrier control. A schematic map of the adsorption-desorption regimes acting as a function of time and intensity of the convection is constructed. General expressions for the rate of adsorption and desorption of alcohols are formulated.

11.
Langmuir ; 32(35): 8858-71, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27529571

RESUMO

A method is proposed for the experimental determination of the adsorption of inorganic electrolytes at a surface covered with insoluble surfactant monolayer. This task is complicated by the fact that the change of the salt concentration alters both chemical potentials of the electrolyte and the surfactant. Our method resolves the question by combining data for the surface pressure versus area of the monolayer at several salt concentrations with data for the equilibrium spreading pressure of crystals of the surfactant (used to fix a standard state). We applied the method to alcohols spread at the surface of concentrated halide solutions. The measured salt adsorption is positive and has nonmonotonic dependence on the area per surfactant molecule. For the liquid expanded film, depending on the concentration, there is one couple of ions adsorbed per each 3-30 surfactant molecules. We analyzed which ion, the positive or the negative, stands closer to the surface, by measuring the effect of NaCl on the Volta potential of the monolayer. The potentiometric data suggest that Na(+) is specifically adsorbed, while Cl(-) remains in the diffuse layer, i.e., the surface is positively charged. The observed reverse Hofmeister series of the adsorptions of NaF, NaCl, and NaBr suggests the same conclusion holds for all these salts. The force that causes the adsorption of Na(+) seems to be the interaction of the ion with the dipole moment of the monolayer.

12.
Cell Mol Life Sci ; 70(4): 689-709, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22996258

RESUMO

Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequencing revealed a drought-induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosynthetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (members of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehydration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abundant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC-MS revealed accumulation of sucrose, verbascose, spermidine, and γ-aminobutyric acid during drought, as well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis.


Assuntos
Craterostigma/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Aclimatação , Catalase/genética , Craterostigma/genética , Dessecação , Secas , Perfilação da Expressão Gênica , Metaboloma , Estresse Oxidativo , Água/metabolismo
13.
J Invertebr Pathol ; 115: 99-101, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24286660

RESUMO

Cry9Aa, produced by Bacillus thuringiensis is reported to be not active against Spodoptera exigua (beet armyworm). In this study we have cloned a new cry9Aa5 gene encoding a protoxin with increased activity against S. exigua as compared to Cry9Aa1. When aligned to Cry9Aa1, four amino acid substitutions in domain I and one substitution in the C-terminal protein extension of Cry9Aa5 were identified. Toxicity of Cry9Aa5, produced in recombinant Escherichia coli was assessed and compared to the activity of Cry9Aa1, produced under the same conditions.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Controle Biológico de Vetores/métodos , Spodoptera/microbiologia , Sequência de Aminoácidos , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Biotechnol Biotechnol Equip ; 28(3): 402-407, 2014 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-26019526

RESUMO

Potato spindle tuber viroid (PSTVd) is an infectious small, circular, non-coding single-stranded RNA that induces disease on many crop species, ornamental plants, weeds and parasitic plants. PSTVd propagate in their host as a population of closely related but non-identical RNA variants referred to as quasispecies. Recently, we have described three de novo arising PSTVd variants in the parasitic plant Phelipanche ramosa after mechanical inoculation with the PSTVd KF440-2 isolate. These P. ramosa derived mutants were designated as G241-C, C208-U and C227-U PSTVd variants. Each of these variants carries a single-nucleotide substitution compared to the PSTVd KF440-2 sequence from which they are considered to have evolved. Here we complement our previous studies on these mutants by exploring their potential to infect the floral organs of tomato plants. We found that the PSTVd G241-C and C208-U variants were able to replicate in systemic leaves and floral organs of tomato plants, while the PSTVd C227-U variant did not develop systemic infection. Furthermore, we analysed the progeny of these PSTVd variants in sepals and petals of tomato plants for retention of the specific mutations.

15.
Genomics ; 99(5): 275-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22446413

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs, which are negative regulators of gene expression. Many genes in human uterine leiomyoma (ULM) are aberrantly expressed and in some cases this can be due to dysregulation of miRNAs. Here we present the first study to determine genome-wide miRNA expression patterns in uterine leiomyoma and myometrium using Solexa high-throughput sequencing. We found more than 50 miRNAs, which were differentially expressed, and furthermore we extend the list of putative new miRNA genes. The top five significantly de-regulated miRNAs in ULMs that we found in our libraries were miR-363, miR-490, miR-137, miR-217 and miR-4792. We also observed "isomiRs" with higher copy number than referenced mature miRNA specific for the leiomyoma libraries, which have a potential role in tumorigenesis. The microRNA transcriptomes obtained in this study deliver insights and further expand our understanding the role of small RNAs in uterine leiomyoma development.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leiomioma/genética , MicroRNAs/genética , Neoplasias Uterinas/genética , Sequência de Bases , DNA Complementar/química , DNA Complementar/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Biblioteca Gênica , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA/métodos , Homologia de Sequência do Ácido Nucleico , Transcriptoma
16.
ScientificWorldJournal ; 2013: 876897, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24459448

RESUMO

Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05-0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment.


Assuntos
Osmose , Soluções/química , Água/química
17.
J Phys Chem Lett ; 14(20): 4652-4656, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37167099

RESUMO

The interactions between ions and lipid monolayers have captivated the attention of biologists and chemists alike for almost a century. In the absence of experimentally accessible concentration profiles, the electrolyte adsorption remains the most informative quantitative characteristic of the ion-lipid interactions. However, there is no established procedure to obtain the electrolyte adsorption on spread lipid monolayers. As a result, in the literature, the ion-lipid monolayer interactions are discussed qualitatively, based on the electrolyte effect on more easily accessible variables, e.g., surface tension. In this letter, we demonstrate how the electrolyte adsorption on lipid monolayers can be obtained experimentally. The procedure requires combining surface pressure versus molecular area compression isotherms with spreading pressure data. For the first time, we report an adsorption isotherm of NaCl on a lipid monolayer as a function of the density of the monolayer. The leading interactions seem to be the osmotic effect from the lipid head groups in the surface layer and ion-lipid association.


Assuntos
Eletrólitos , Lipídeos , Adsorção , Tensão Superficial , Propriedades de Superfície
18.
Viruses ; 15(7)2023 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-37515244

RESUMO

Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development.


Assuntos
Vírus da Hepatite E , Hepatite E , Vacinas Virais , Animais , Humanos , Feminino , Suínos , Gravidez , Coelhos , Ratos , Ovinos , Hepatite E/epidemiologia , Hepatite E/prevenção & controle , Europa (Continente)/epidemiologia , Infecção Persistente , Vacinas Sintéticas , Zoonoses
19.
Proc Natl Acad Sci U S A ; 106(34): 14466-71, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19666479

RESUMO

The CDC14 family of multifunctional evolutionarily conserved phosphatases includes major regulators of mitosis in eukaryotes and of DNA damage response in humans. The CDC14 function is also crucial for accurate chromosome segregation, which is exemplified by its absolute requirement in yeast for the anaphase segregation of nucleolar organizers; however the nature of this essential pathway is not understood. Upon investigation of the rDNA nondisjunction phenomenon, it was found that cdc14 mutants fail to complete replication of this locus. Moreover, other late-replicating genomic regions (10% of the genome) are also underreplicated in cdc14 mutants undergoing anaphase. This selective genome-wide replication defect is due to dosage insufficiency of replication factors in the nucleus, which stems from two defects, both contingent on the reduced CDC14 function in the preceding mitosis. First, a constitutive nuclear import defect results in a drastic dosage decrease for those replication proteins that are regulated by nuclear transport. Particularly, essential RPA subunits display both lower mRNA and protein levels, as well as abnormal cytoplasmic localization. Second, the reduced transcription of MBF and SBF-controlled genes in G1 leads to the reduction in protein levels of many proteins involved in DNA replication. The failure to complete replication of late replicons is the primary reason for chromosome nondisjunction upon CDC14 dysfunction. As the genome-wide slow-down of DNA replication does not trigger checkpoints [Lengronne A, Schwob E (2002) Mol Cell 9:1067-1078], CDC14 mutations pose an overwhelming challenge to genome stability, both generating chromosome damage and undermining the checkpoint control mechanisms.


Assuntos
Proteínas de Ciclo Celular/genética , Cromossomos Fúngicos/genética , DNA Fúngico/biossíntese , Mutação , Proteínas Tirosina Fosfatases/genética , Proteínas de Saccharomyces cerevisiae/genética , Transporte Ativo do Núcleo Celular , Anáfase/genética , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Segregação de Cromossomos , Dano ao DNA , Replicação do DNA , DNA Fúngico/genética , DNA Ribossômico/genética , Fase G1/genética , Genes Essenciais/genética , Genes Essenciais/fisiologia , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla , Modelos Biológicos , Ligação Proteica , Proteínas Tirosina Fosfatases/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
20.
Genomics ; 97(5): 282-93, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21371551

RESUMO

Plant microRNAs (miRNAs) are single-stranded 20-22 nt small RNAs (sRNA) that are produced from their own genes. We have developed a de novo genome-wide approach for the computational identification of novel plant miRNAs based on the integration of the complete genome sequence with sRNA libraries. It comprises three modules - the clustering module identifies genomic regions that have two closely-located unidirectional sRNA clusters, the mirplan module explores the secondary structure of the genomic regions, and the duplex module predicts miRNA/miRNA* duplexes. We applied our approach to the Brachypodium genome and publicly available sRNA libraries and predicted 102 miRNAs. Our results extend the list of known miRNAs with 58 novel miRNAs and define the genomic loci of all predicted miRNAs. Because this approach considers specific features of plant miRNAs, it can be employed for the analysis of the genome and sRNA libraries generated for plant species to achieve systematic miRNA discovery.


Assuntos
Brachypodium/genética , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Genoma de Planta/genética , MicroRNAs/genética , Sequência de Bases , Biblioteca Gênica , MicroRNAs/química , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA