Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell ; 134(1): 135-47, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18614017

RESUMO

The small GTPases, Rab5 and Rac, are essential for endocytosis and actin remodeling, respectively. Coordination of these processes is critical to achieve spatial restriction of intracellular signaling, which is essential for a variety of polarized functions. Here, we show that clathrin- and Rab5-mediated endocytosis are required for the activation of Rac induced by motogenic stimuli. Rac activation occurs on early endosomes, where the RacGEF Tiam1 is also recruited. Subsequent recycling of Rac to the plasma membrane ensures localized signaling, leading to the formation of actin-based migratory protrusions. Thus, membrane trafficking of Rac is required for the spatial resolution of Rac-dependent motogenic signals. We further demonstrate that a Rab5-to-Rac circuitry controls the morphology of motile mammalian tumor cells and primordial germinal cells during zebrafish development, suggesting that this circuitry is relevant for the regulation of migratory programs in various cells, in both in vitro settings and whole organisms.


Assuntos
Movimento Celular , Endocitose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas rab5 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Clatrina/metabolismo , Embrião de Mamíferos/citologia , Embrião não Mamífero/citologia , Endossomos/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Camundongos , Peixe-Zebra
2.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982845

RESUMO

Glioblastoma multiforme (GBM) is the most common and malignant brain tumor in adults. The invasiveness and the rapid progression that characterize GBM negatively impact patients' survival. Temozolomide (TMZ) is currently considered the first-choice chemotherapeutic agent. Unfortunately, over 50% of patients with GBM do not respond to TMZ treatment, and the mutation-prone nature of GBM enables the development of resistance mechanisms. Therefore, efforts have been devoted to the dissection of aberrant pathways involved in GBM insurgence and resistance in order to identify new therapeutic targets. Among them, sphingolipid signaling, Hedgehog (Hh) pathway, and the histone deacetylase 6 (HDAC6) activity are frequently dysregulated and may represent key targets to counteract GBM progression. Given the positive correlation between Hh/HDAC6/sphingolipid metabolism in GBM, we decided to perform a dual pharmacological inhibition of Hh and HDAC6 through cyclopamine and tubastatin A, respectively, in a human GMB cell line and zebrafish embryos. The combined administration of these compounds elicited a more significant reduction of GMB cell viability than did single treatments in vitro and in cells orthotopically transplanted in the zebrafish hindbrain ventricle. We demonstrated, for the first time, that the inhibition of these pathways induces lysosomal stress which results in an impaired fusion of lysosomes with autophagosomes and a block of sphingolipid degradation in GBM cell lines. This condition, which we also recapitulated in zebrafish embryos, suggests an impairment of lysosome-dependent processes involving autophagy and sphingolipid homeostasis and might be instrumental in the reduction of GBM progression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Animais , Humanos , Glioblastoma/metabolismo , Desacetilase 6 de Histona , Peixe-Zebra , Sobrevivência Celular , Proteínas Hedgehog , Temozolomida/farmacologia , Lisossomos/metabolismo , Esfingolipídeos , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos
3.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628321

RESUMO

Extracellular vesicles (EVs) are membranous particles released by all cell types. Their role as functional carrier of bioactive molecules is boosted by cells that actively secrete them in biological fluids or in the intercellular space (interstitial EVs, iEVs). Here we have optimised a method for the isolation and characterization of zebrafish iEVs from whole melanoma tissues. Zebrafish melanoma iEVs are around 140 nm in diameter, as determined by nanoparticle tracking and transmission electron microscopy (TEM) analysis. Western blot analysis shows enrichment for CD63 and Alix in the iEV fraction, but not in melanoma cell lysates. Super resolution and confocal microscopy reveal that purified zebrafish iEVs are green fluorescent protein positive (GFP+), indicating that they integrate the oncogene GFP-HRASV12G used to induce melanoma in this model within their vesicular membrane or luminal content. Analysis of RNA-Seq data found 118 non-coding (nc)RNAs differentially distributed between zebrafish melanoma and their iEVs, with only 17 of them being selectively enriched in iEVs. Among these, the RNA components of RNAses P and MRP, which process ribosomal RNA precursors, mitochondrial RNAs, and some mRNAs, were enriched in zebrafish and human melanoma EVs, but not in iEVs extracted from brain tumours. We found that melanoma iEVs induce an inflammatory response when injected in larvae, with increased expression of interferon responsive genes, and this effect is reproduced by MRP- or P-RNAs injected into circulation. This suggests that zebrafish melanoma iEVs are a source of MRP- and P-RNAs that can trigger inflammation in cells of the innate immune system.


Assuntos
Vesículas Extracelulares , Melanoma , Animais , Vesículas Extracelulares/metabolismo , Inflamação/genética , Inflamação/metabolismo , Melanoma/genética , Melanoma/metabolismo , RNA não Traduzido/metabolismo , Peixe-Zebra/genética
4.
Nature ; 488(7410): 231-5, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22722852

RESUMO

Non-coding RNAs (ncRNAs) are involved in an increasingly recognized number of cellular events. Some ncRNAs are processed by DICER and DROSHA RNases to give rise to small double-stranded RNAs involved in RNA interference (RNAi). The DNA-damage response (DDR) is a signalling pathway that originates from a DNA lesion and arrests cell proliferation3. So far, DICER and DROSHA RNA products have not been reported to control DDR activation. Here we show, in human, mouse and zebrafish, that DICER and DROSHA, but not downstream elements of the RNAi pathway, are necessary to activate the DDR upon exogenous DNA damage and oncogene-induced genotoxic stress, as studied by DDR foci formation and by checkpoint assays. DDR foci are sensitive to RNase A treatment, and DICER- and DROSHA-dependent RNA products are required to restore DDR foci in RNase-A-treated cells. Through RNA deep sequencing and the study of DDR activation at a single inducible DNA double-strand break, we demonstrate that DDR foci formation requires site-specific DICER- and DROSHA-dependent small RNAs, named DDRNAs, which act in a MRE11­RAD50­NBS1-complex-dependent manner (MRE11 also known as MRE11A; NBS1 also known as NBN). DDRNAs, either chemically synthesized or in vitro generated by DICER cleavage, are sufficient to restore the DDR in RNase-A-treated cells, also in the absence of other cellular RNAs. Our results describe an unanticipated direct role of a novel class of ncRNAs in the control of DDR activation at sites of DNA damage.


Assuntos
Dano ao DNA/genética , RNA não Traduzido/genética , Ribonuclease III/genética , Peixe-Zebra/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Células HEK293 , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA não Traduzido/biossíntese , Ribonuclease Pancreático/metabolismo , Análise de Sequência de RNA , Especificidade por Substrato/genética
5.
Nature ; 473(7346): 234-8, 2011 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-21499261

RESUMO

Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD(+)-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo, inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses.


Assuntos
Células Endoteliais/enzimologia , Regulação da Expressão Gênica , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Acetilação , Animais , Células Endoteliais/citologia , Técnicas de Inativação de Genes , Inativação Gênica , Células HEK293 , Humanos , Camundongos , Mutação , Receptor Notch1/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
6.
J Cell Sci ; 127(Pt 3): 485-95, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24481493

RESUMO

Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.


Assuntos
Biologia Celular , Desenvolvimento Embrionário/genética , Proteínas de Transporte Vesicular/genética , Peixe-Zebra/embriologia , Animais , Movimento Celular/genética , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Fenótipo , Vertebrados/genética , Proteínas de Transporte Vesicular/metabolismo , Peixe-Zebra/genética
7.
Development ; 140(19): 3997-4007, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24046318

RESUMO

Although progress has been made in resolving the genetic pathways that specify neuronal asymmetries in the brain, little is known about genes that mediate the development of structural asymmetries between neurons on left and right. In this study, we identify daam1a as an asymmetric component of the signalling pathways leading to asymmetric morphogenesis of the habenulae in zebrafish. Daam1a is a member of the Formin family of actin-binding proteins and the extent of Daam1a expression in habenular neuron dendrites mirrors the asymmetric growth of habenular neuropil between left and right. Local loss and gain of Daam1a function affects neither cell number nor subtype organisation but leads to a decrease or increase of neuropil, respectively. Daam1a therefore plays a key role in the asymmetric growth of habenular neuropil downstream of the pathways that specify asymmetric cellular domains in the habenulae. In addition, Daam1a mediates the development of habenular efferent connectivity as local loss and gain of Daam1a function impairs or enhances, respectively, the growth of habenular neuron terminals in the interpeduncular nucleus. Abrogation of Daam1a disrupts the growth of both dendritic and axonal processes and results in disorganised filamentous actin and α-tubulin. Our results indicate that Daam1a plays a key role in asymmetric habenular morphogenesis mediating the growth of dendritic and axonal processes in dorsal habenular neurons.


Assuntos
Axônios/metabolismo , Dendritos/metabolismo , Habenula/embriologia , Habenula/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
Adv Exp Med Biol ; 916: 21-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165348

RESUMO

Here we describe the conditional zebrafish cancer toolbox, which allows for fine control of the expression of oncogenes or downregulation of tumor suppressors at the spatial and temporal level. Methods such as the Gal4/UAS or the Cre/lox systems paved the way to the development of elegant tumor models, which are now being used to study cancer cell biology, clonal evolution, identification of cancer stem cells and anti-cancer drug screening. Combination of these tools, as well as novel developments such as the promising genome editing system through CRISPR/Cas9 and clever application of light reactive proteins will enable the development of even more sophisticated zebrafish cancer models. Here, we introduce this growing toolbox of conditional transgenic approaches, discuss its current application in zebrafish cancer models and provide an outlook on future perspectives.


Assuntos
Modelos Animais de Doenças , Neoplasias/patologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Hormônios/fisiologia , Neoplasias/genética , Neoplasias/fisiopatologia , Optogenética , Peixe-Zebra
9.
Development ; 139(19): 3644-52, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22949618

RESUMO

In zebrafish, as in many animals, maternal dorsal determinants are vegetally localized in the egg and are transported after fertilization in a microtubule-dependent manner. However, the organization of early microtubules, their dynamics and their contribution to axis formation are not fully understood. Using live imaging, we identified two populations of microtubules, perpendicular bundles and parallel arrays, which are directionally oriented and detected exclusively at the vegetal cortex before the first cell division. Perpendicular bundles emanate from the vegetal cortex, extend towards the blastoderm, and orient along the animal-vegetal axis. Parallel arrays become asymmetric on the vegetal cortex, and orient towards dorsal. We show that the orientation of microtubules at 20 minutes post-fertilization can predict where the embryonic dorsal structures in zebrafish will form. Furthermore, we find that parallel microtubule arrays colocalize with wnt8a RNA, the candidate maternal dorsal factor. Vegetal cytoplasmic granules are displaced with parallel arrays by ~20°, providing in vivo evidence of a cortical rotation-like process in zebrafish. Cortical displacement requires parallel microtubule arrays, and probably contributes to asymmetric transport of maternal determinants. Formation of parallel arrays depends on Ca(2+) signaling. Thus, microtubule polarity and organization predicts the zebrafish embryonic axis. In addition, our results suggest that cortical rotation-like processes might be more common in early development than previously thought.


Assuntos
Padronização Corporal , Córtex Cerebral/embriologia , Microtúbulos/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Blastoderma/embriologia , Blastoderma/metabolismo , Padronização Corporal/genética , Sinalização do Cálcio/fisiologia , Córtex Cerebral/ultraestrutura , Embrião não Mamífero , Feminino , Fertilização/fisiologia , Previsões , Proteínas de Fluorescência Verde/genética , Masculino , Interações Espermatozoide-Óvulo/fisiologia , Xenopus , Peixe-Zebra/genética
10.
Nat Methods ; 9(7): 749-54, 2012 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-22581372

RESUMO

We demonstrate three-dimensional (3D) super-resolution in live multicellular organisms using structured illumination microscopy (SIM). Sparse multifocal illumination patterns generated by a digital micromirror device (DMD) allowed us to physically reject out-of-focus light, enabling 3D subdiffractive imaging in samples eightfold thicker than had been previously imaged with SIM. We imaged samples at one 2D image per second, at resolutions as low as 145 nm laterally and 400 nm axially. In addition to dual-labeled, whole fixed cells, we imaged GFP-labeled microtubules in live transgenic zebrafish embryos at depths >45 µm. We captured dynamic changes in the zebrafish lateral line primordium and observed interactions between myosin IIA and F-actin in cells encapsulated in collagen gels, obtaining two-color 4D super-resolution data sets spanning tens of time points and minutes without apparent phototoxicity. Our method uses commercially available parts and open-source software and is simpler than existing SIM implementations, allowing easy integration with wide-field microscopes.


Assuntos
Embrião não Mamífero , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Proteínas de Fluorescência Verde/genética , Aumento da Imagem/instrumentação , Imageamento Tridimensional/instrumentação , Iluminação , Microscopia Confocal/instrumentação , Transgenes , Peixe-Zebra/embriologia , Peixe-Zebra/genética
12.
Zebrafish ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963004

RESUMO

The 4th Italian Zebrafish Meeting took place in Palermo from February 7 to 9, 2024. The primary aim of this meeting was to bring together a diverse group of principal investigators, young researchers, facility managers, commercial vendors, and others to provide an important forum for presentation and discussion of the most innovative and exciting scientific research currently ongoing in Italy using the zebrafish model. Nonetheless, the meeting program has been conceived to allow the dissemination of cutting-edge scientific research across a wide range of topics and to shed light on its future directions, without geographical boundaries. Indeed, people from various parts of the world joined the meeting, and 210 participants presented their latest work in talks and posters. Importantly, the meeting had designated time to foster open scientific exchange and informal networking opportunities among participants of all career stages, thus allowing initiation of new collaborations and strengthening of existing partnerships. The meeting was a tremendous success as testified by the highest participation ever since the first meeting of the series in 2017, coupled with the highly positive satisfaction rating expressed by the attendants. The full program and detailed information about the meeting can be found on the dedicated website at https://itazebrafishmeeting.wixsite.com/izm2024.

13.
Dev Biol ; 362(1): 11-23, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22142964

RESUMO

The T-box transcription factor Eomesodermin (Eomes) has been implicated in patterning and morphogenesis in frog, fish and mouse. In zebrafish, one of the two Eomes homologs, Eomesa, has been implicated in dorsal-ventral patterning, epiboly and endoderm specification in experiments employing over-expression, dominant-negative constructs and antisense morpholino oligonucleotides. Here we report for the first time the identification and characterization of an Eomesa mutant generated by TILLING. We find that Eomesa has a strictly maternal role in the initiation of epiboly, which involves doming of the yolk cell up into the overlying blastoderm. By contrast, epiboly progression is normal, demonstrating for the first time that epiboly initiation is genetically separable from progression. The yolk cell microtubules, which are required for epiboly, are defective in maternal-zygotic eomesa mutant embryos. In addition, the deep cells of the blastoderm are more tightly packed and exhibit more bleb-like protrusions than cells in control embryos. We postulate that the doming delay may be the consequence both of overly stabilized yolk cell microtubules and defects in the adhesive properties or motility of deep cells. We also show that Eomesa is required for normal expression of the endoderm markers sox32, bon and og9x; however it is not essential for endoderm formation.


Assuntos
Padronização Corporal/fisiologia , Movimento Celular/fisiologia , Gástrula/embriologia , Proteínas com Domínio T/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Western Blotting , Adesão Celular/fisiologia , DNA Complementar/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Microtúbulos/fisiologia , Dados de Sequência Molecular , Fatores de Transcrição SOX/metabolismo , Análise de Sequência de DNA , Proteínas com Domínio T/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/genética
14.
PLoS Biol ; 8(12): e1000562, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21179501

RESUMO

It has not previously been possible to live image the earliest interactions between the host environment and oncogene-transformed cells as they initiate formation of cancers within an organism. Here we take advantage of the translucency of zebrafish larvae to observe the host innate immune cell response as oncogene-transformed melanoblasts and goblet cells multiply within the larval skin. Our studies indicate activation of leukocytes at very early stages in larvae carrying a transformed cell burden. Locally, we see recruitment of neutrophils and macrophages by 48 h post-fertilization, when transformed cells are still only singletons or doublets, and soon after this we see intimate associations between immune and transformed cells and frequent examples of cytoplasmic tethers linking the two cell types, as well as engulfment of transformed cells by both neutrophils and macrophages. We show that a major component of the signal drawing inflammatory cells to oncogenic HRAS(G12V)-transformed cells is H(2)O(2), which is also a key damage cue responsible for recruiting neutrophils to a wound. Our short-term blocking experiments show that preventing recruitment of immune cells at these early stages results in reduced growth of transformed cell clones and suggests that immune cells may provide a source of trophic support to the transformed cells just as they do at a site of tissue repair. These parallels between the inflammatory responses to transformed cells and to wounds reinforce the suggestion by others that cancers resemble non-healing wounds.


Assuntos
Transformação Celular Neoplásica/imunologia , Imunidade Inata , Melanoma/imunologia , Ferimentos e Lesões/imunologia , Peixe-Zebra/imunologia , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Larva/imunologia , Melanócitos/citologia , Microscopia Confocal , Morfolinas/imunologia , NADPH Oxidases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transgenes , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
15.
Nat Commun ; 14(1): 7086, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925537

RESUMO

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism activated in ~10-15% of cancers, characterized by telomeric damage. Telomeric damage-induced long non-coding RNAs (dilncRNAs) are transcribed at dysfunctional telomeres and contribute to telomeric DNA damage response (DDR) activation and repair. Here we observed that telomeric dilncRNAs are preferentially elevated in ALT cells. Inhibition of C-rich (teloC) dilncRNAs with antisense oligonucleotides leads to DNA replication stress responses, increased genomic instability, and apoptosis induction selectively in ALT cells. Cell death is dependent on DNA replication and is increased by DNA replication stress. Mechanistically, teloC dilncRNA inhibition reduces RAD51 and 53BP1 recruitment to telomeres, boosts the engagement of BIR machinery, and increases C-circles and telomeric sister chromatid exchanges, without increasing telomeric non-S phase synthesis. These results indicate that teloC dilncRNA is necessary for a coordinated recruitment of DDR factors to ALT telomeres and it is essential for ALT cancer cells survival.


Assuntos
Telomerase , Homeostase do Telômero , Homeostase do Telômero/genética , Replicação do DNA , RNA , Sobrevivência Celular/genética , Telômero/genética , Telômero/metabolismo , Telomerase/genética , Telomerase/metabolismo
16.
Nat Commun ; 13(1): 3435, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35701478

RESUMO

Base Editors are emerging as an innovative technology to introduce point mutations in complex genomes. So far, the requirement of an NGG Protospacer Adjacent Motif (PAM) at a suitable position often limits the base editing possibility to model human pathological mutations in animals. Here we show that, using the CBE4max-SpRY variant recognizing nearly all PAM sequences, we could introduce point mutations for the first time in an animal model with high efficiency, thus drastically increasing the base editing possibilities. With this near PAM-less base editor we could simultaneously mutate several genes and we developed a co-selection method to identify the most edited embryos based on a simple visual screening. Finally, we apply our method to create a zebrafish model for melanoma predisposition based on the simultaneous base editing of multiple genes. Altogether, our results considerably expand the Base Editor application to introduce human disease-causing mutations in zebrafish.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Animais , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
17.
Elife ; 102021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33576334

RESUMO

While zebrafish is emerging as a new model system to study human diseases, an efficient methodology to generate precise point mutations at high efficiency is still lacking. Here we show that base editors can generate C-to-T point mutations with high efficiencies without other unwanted on-target mutations. In addition, we established a new editor variant recognizing an NAA protospacer adjacent motif, expanding the base editing possibilities in zebrafish. Using these approaches, we first generated a base change in the ctnnb1 gene, mimicking oncogenic an mutation of the human gene known to result in constitutive activation of endogenous Wnt signaling. Additionally, we precisely targeted several cancer-associated genes including cbl. With this last target, we created a new zebrafish dwarfism model. Together our findings expand the potential of zebrafish as a model system allowing new approaches for the endogenous modulation of cell signaling pathways and the generation of precise models of human genetic disease-associated mutations.


Assuntos
Oncogenes , Mutação Puntual , Transdução de Sinais , Proteínas de Peixe-Zebra/genética , beta Catenina/genética , Animais , Modelos Animais de Doenças , Edição de Genes , Humanos , Mutação , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 29(5): 657-64, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19164804

RESUMO

OBJECTIVE: Human Tissue Kallikrein (hKLK1) overexpression promotes an enduring neovascularization of ischemic tissue, yet the cellular mechanisms of hKLK1-induced arteriogenesis remain unknown. Furthermore, no previous study has compared the angiogenic potency of hKLK1, with its loss of function polymorphic variant, rs5515 (R53H), which possesses reduced kinin-forming activity. METHODS AND RESULTS: Here, we demonstrate that tissue kallikrein knockout mice (KLK1-/-) show impaired muscle neovascularization in response to hindlimb ischemia. Gene-transfer of wild-type Ad.hKLK1 but not Ad.R53H-hKLK1 was able to rescue this defect. Similarly, in the rat mesenteric assay, Ad.hKLK1 induced a mature neovasculature with increased vessel diameter through kinin-B2 receptor-mediated recruitment of pericytes and vascular smooth muscle cells, whereas Ad.R53H-hKLK1 was ineffective. Moreover, hKLK1 but not R53H-hKLK1 overexpression in the zebrafish induced endothelial precursor cell migration and vascular remodeling. Furthermore, Ad.hKLK1 activates metalloproteinase (MMP) activity in normoperfused muscle and fails to promote reparative neovascularization in ischemic MMP9-/- mice, whereas its proarteriogenic action was preserved in ApoE-/- mice, an atherosclerotic model of impaired angiogenesis. CONCLUSIONS: These results demonstrate the fundamental role of endogenous Tissue Kallikrein in vascular repair and provide novel information on the cellular and molecular mechanisms responsible for the robust arterialization induced by hKLK1 overexpression.


Assuntos
Membro Posterior/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Circulação Esplâncnica/fisiologia , Calicreínas Teciduais/fisiologia , Animais , Humanos , Isquemia/fisiopatologia , Sistema Calicreína-Cinina/fisiologia , Masculino , Metaloproteinase 9 da Matriz/fisiologia , Camundongos , Camundongos Knockout , Ratos , Cicatrização/fisiologia , Peixe-Zebra
19.
Dev Biol ; 317(2): 671-85, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18358469

RESUMO

The Tbx20 orthologue, mab-9, is required for development of the Caenorhabditis elegans hindgut, whereas several vertebrate Tbx20 genes promote heart development. Here we show that Tbx20 orthologues also have a role in motor neuron development that is conserved between invertebrates and vertebrates. mab-9 mutants exhibit guidance defects in dorsally projecting axons from motor neurons located in the ventral nerve cord. Danio rerio (Zebrafish) tbx20 morphants show defects in the migration patterns of motor neuron soma of the facial and trigeminal motor neuron groups. Human TBX20 is expressed in motor neurons in the developing hindbrain of human embryos and we show that human TBX20 can substitute for zebrafish tbx20 in promoting cranial motor neuron migration. mab-9 is also partially able to rescue the zebrafish migration defect, whereas other vertebrate T-box genes cannot. Conversely we show that the human TBX20 T-box domain can rescue motor neuron defects in C. elegans. These data suggest the functional equivalence of Tbx20 orthologues in regulating the development of specific motor neuron groups. We also demonstrate the functional equivalence of human and C. elegans Tbx20 T-box domains for regulating male tail development in the nematode even though these genes play highly diverged roles in organogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Evolução Molecular , Sistema Nervoso/embriologia , Proteínas com Domínio T/genética , Cauda/embriologia , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Movimento Celular/genética , Análise por Conglomerados , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Hibridização In Situ , Dados de Sequência Molecular , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Proteínas com Domínio T/fisiologia , Cauda/metabolismo , Fatores de Transcrição/fisiologia , Peixe-Zebra
20.
Pharmacol Ther ; 118(2): 206-30, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18439684

RESUMO

The cardiovascular system provides oxygen, nutrients and hormones to organs, it directs traffic of metabolites and it maintains tissue homeostasis. It is one of the first organs assembled during vertebrate development and it is essential to life from early stages to adult. For these reasons, the process of vessel formation has being studied for more than a century, but it is only in the late eighties that there has been an explosion of research in the field with the employment of various in vitro and in vivo model systems. The zebrafish (Danio rerio) offers several advantages for in vivo studies; it played a fundamental role in new discoveries and helped to refine our knowledge of the vascular system. This review recapitulates the zebrafish data on vasculogenesis and angiogenesis, including the specification of the haemangioblasts from the mesoderm, their migration to form the vascular cord followed by axial vessels specification, the primary and secondary sprouting of intersomitic vessels, the formation of the lumen, the arterial versus venous specification and patterning. To emphasize the strengths of the zebrafish system in the vascular field, we summarize main tools, such as gene expression and mutagenesis screens, knock down technologies, transgenic lines and imaging, which played a major role in the development of the field and allowed significant discoveries, for instance the recent visualization of the lymphatic system in zebrafish. This information contributes to the prospective of drug discovery to cure human diseases linked to angiogenesis, not last tumours.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Sistema Cardiovascular/crescimento & desenvolvimento , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Bases de Dados Factuais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA