Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39202128

RESUMO

Quantum thermal engines have received much attention in recent years due to their potential applications. For a candidate group, harmonically trapped gases under Bose-Einstein condensation (BEC), we see little investigation on the energy transference around that transition. Therefore, we present an empirical study with rubidium-87 gas samples in a magnetic harmonic trap. We developed an empirical equation of state model to fit to our experimental dataset, expressing the pressure parameter in terms of temperature, and six technical coefficients, functions of the volume parameter and the number of atoms. By using standard thermodynamic relations, we determine the system's entropy, shown to be constant at the BEC transition, as expected. Being isentropic makes the BEC transition an energy source for non-mechanical work. Hence, we observed that the enthalpy at the BEC transition, at fixed values of the volume parameter, grows fairly linearly with the number of atoms. We fitted a linear function to that data, finding the specific enthalpy of the BEC transformation and the intrinsic enthalpic loss for BEC. We deem this study to be a step closer to practical quantum-based engines.

2.
Entropy (Basel) ; 25(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36832677

RESUMO

Carnot cycles of samples of harmonically confined ultracold 87Rb fluids, near and across Bose-Einstein condensation (BEC), are analyzed. This is achieved through the experimental determination of the corresponding equation of state in terms of the appropriate global thermodynamics for non-uniform confined fluids. We focus our attention on the efficiency of the Carnot engine when the cycle occurs for temperatures either above or below the critical temperature and when BEC is crossed during the cycle. The measurement of the cycle efficiency reveals a perfect agreement with the theoretical prediction (1-TL/TH), with TH and TL serving as the temperatures of the hot and cold heat exchange reservoirs. Other cycles are also considered for comparison.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA