Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 150(3): 690-700, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35240144

RESUMO

BACKGROUND: Atopic dermatitis is a chronic inflammatory skin disease with persistent and severe itch among its hallmark features. Significant increases in type 2 cytokines (ie, IL-4, IL-13, IL-31) have been documented in acute atopic dermatitis lesions and lead to multifaceted downstream effects, including inflammation, epidermal barrier dysfunction, and itch. OBJECTIVE: The primary objective of preclinical studies reported here was to test direct effects of IL-13 and an anti-IL-13 mAb, lebrikizumab, in a human dorsal root ganglion model in itch amplification, neuronal excitability, and transcriptional downstream targets. METHODS: Neuroactive effects were assessed via live cell calcium imaging, electric field stimulation, and RNA sequencing of human dorsal root ganglia stimulated with IL-13 alone or in combination with lebrikizumab. RESULTS: These preclinical findings suggest that IL-13 plays a direct enhancer role in multiple itch and neuroactive pathways as well as transcriptional downstream effects, and provide key insights into the mechanistic basis for lebrikizumab's anti-itch effects. CONCLUSION: IL-13 is a potent enhancer of neuronal responses to different itch stimuli, consistent with the neuroimmune axis contributing to chronic itch-associated inflammatory skin disease, and blockade of this cytokine pathway may provide a therapeutic approach.


Assuntos
Dermatite Atópica , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antipruriginosos/farmacologia , Citocinas/metabolismo , Humanos , Prurido , Pele
2.
Front Mol Neurosci ; 16: 1258823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868811

RESUMO

Introduction: Chronic itch is a central symptom of atopic dermatitis. Cutaneous afferent neurons express receptors interleukins (IL)-4, IL-13, and IL-33, which are type 2 cytokines that are elevated in atopic dermatitis. These neuronal cytokine receptors were found to be required in several murine models of itch. Prior exposure of neurons to either IL-4 or IL-33 increased their response to subsequent chemical pruritogens in mice but has not been previously examined in humans. The objective of the present study was to determine if type 2 cytokine stimulation sensitizes sensory neurons to future itch stimuli in a fully human ex vivo system. Methods: We measured calcium flux from human dorsal root ganglia cultures from cadaveric donors in response to pruritogens following transient exposure to type 2 cytokines. We also measured their effect on neuronal calcium flux and changes in gene expression by RNA sequencing. Results: Type 2 cytokines (IL-4, IL-13, and IL-33) were capable of sensitizing human dorsal root ganglia neurons to both histaminergic and nonhistaminergic itch stimuli. Sensitization was observed after only 2 h of pruritogen incubation. We observed rapid neuronal calcium flux in a small subset of neurons directly in response to IL-4 and to IL-13, which was dependent on the presence of extracellular calcium. IL-4 and IL-13 induced a common signature of upregulated genes after 24 h of exposure that was unique from IL-33 and non-type 2 inflammatory stimuli. Discussion: This study provides evidence of peripheral neuron sensitization by type 2 cytokines as well as broad transcriptomic effects in human sensory ganglia. These studies identify both unique and overlapping roles of these cytokines in sensory neurons.

3.
J Vis Exp ; (186)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36036601

RESUMO

The evaluation of changes in heart contractility is essential during preclinical development for new cardiac- and non-cardiac-targeted compounds. This paper describes a protocol for assessing changes in contractility in adult human primary ventricular cardiomyocytes utilizing the MyoBLAZER, a non-invasive optical method that preserves the normal physiology and pharmacology of the cells. This optical recording method continuously measures contractility transients from multiple cells in parallel, providing both medium-throughput and valuable information for each individual cell in the field of view, enabling the real-time tracking of drug effects. The cardiomyocyte contractions are induced by paced electrical field stimulation, and the acquired bright field images are fed to an image-processing software that measures the sarcomere shortening across multiple cardiomyocytes. This method rapidly generates different endpoints related to the kinetics of contraction and relaxation phases, and the resulting data can then be interpreted in relation to different concentrations of a test article. This method is also employed in the late stages of preclinical development to perform follow-up mechanistic studies to support ongoing clinical studies. Thus, the adult human primary cardiomyocyte-based model combined with the optical system for continuous contractility monitoring has the potential to contribute to a new era of in vitro cardiac data translatability in preclinical medical therapy development.


Assuntos
Contração Miocárdica , Miócitos Cardíacos , Adulto , Humanos , Miócitos Cardíacos/fisiologia , Sarcômeros
4.
J Mol Recognit ; 24(3): 477-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21504026

RESUMO

We report on the use of tris(hydroxymethyl)phosphine-alanine (THPAL) functionalized gold nanoparticles as a multivalent cross-linking agent to assemble collagen fibrils into a mesh-like structure. Atomic force microscopy (AFM) was used for characterization of the structure after adsorption onto an atomically flat mica substrate, revealing a mesh-like construct in which the collagen fibrils and the gold nanoparticles interact to form interconnected nodes measuring from 100 to 500 nm. As expected, the density of the collagen mesh can be increased with a higher initial concentration of gold nanoparticles. The maximum thickness of the meshes (∼ 20 nm) obtained through cross-sectional height measurements confirms that the adsorbed structure consists of a single layer of collagen fibrils/gold nanoparticles assembled in two-dimensions. We propose that the capability of gold nanoparticles functionalized with the THPAL to bind to several collagen fibrils combined with the large persistence length of the fibrils, which was reported to be in the hundreds of nanometer range, are determinant factors for the preferential 2D growth of the mesh in solution.


Assuntos
Alanina/química , Colágeno/química , Reagentes de Ligações Cruzadas/química , Ouro/química , Nanopartículas Metálicas/química , Fosfinas/química , Microscopia de Força Atômica/métodos
5.
Sci Rep ; 11(1): 12014, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103608

RESUMO

Late sodium current (late INa) inhibition has been proposed to suppress the incidence of arrhythmias generated by pathological states or induced by drugs. However, the role of late INa in the human heart is still poorly understood. We therefore investigated the role of this conductance in arrhythmias using adult primary cardiomyocytes and tissues from donor hearts. Potentiation of late INa with ATX-II (anemonia sulcata toxin II) and E-4031 (selective blocker of the hERG channel) slowed the kinetics of action potential repolarization, impaired Ca2+ homeostasis, increased contractility, and increased the manifestation of arrhythmia markers. These effects could be reversed by late INa inhibitors, ranolazine and GS-967. We also report that atrial tissues from donor hearts affected by atrial fibrillation exhibit arrhythmia markers in the absence of drug treatment and inhibition of late INa with GS-967 leads to a significant reduction in arrhythmic behaviour. These findings reveal a critical role for the late INa in cardiac arrhythmias and suggest that inhibition of this conductance could provide an effective therapeutic strategy. Finally, this study highlights the utility of human ex-vivo heart models for advancing cardiac translational sciences.


Assuntos
Fibrilação Atrial/metabolismo , Canal de Potássio ERG1/metabolismo , Potenciais da Membrana , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Adulto , Cálcio/metabolismo , Venenos de Cnidários/farmacologia , Canal de Potássio ERG1/antagonistas & inibidores , Átrios do Coração/metabolismo , Humanos , Miócitos Cardíacos/patologia , Piperidinas/farmacologia , Piridinas/farmacologia , Ranolazina/farmacologia , Sódio , Triazóis/farmacologia
6.
Br J Pharmacol ; 177(12): 2683-2695, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31985045

RESUMO

BACKGROUND AND PURPOSE: The transient receptor potential (TRP) ion channel TRPM3 functions as a noxious heat sensor, plays a key role in acute pain sensation and inflammatory hyperalgesia in rodents. Despite its potential as a novel analgesic drug target, little is known about the expression, function and modulation in the humans. EXPERIMENTAL APPROACH: We studied TRPM3 in freshly isolated human dorsal root ganglion (hDRG) neurons and human stem cell-derived sensory (hSCDS) neurons. Expression was analysed at the mRNA level using RT-qPCR. Channel function was assessed using Fura-2-based calcium imaging and whole-cell patch-clamp recordings. KEY RESULTS: TRPM3 was detected at the mRNA level in both hDRG and hSCDS neurons. The TRPM3 agonists pregnenolone sulphate (PS) and CIM0216 evoked robust intracellular Ca2+ responses in 52% of hDRG and 58% of hSCDS neurons. Whole-cell patch-clamp recordings in hSCDS neurons revealed pregnenolone sulphate (PS)- and CIM0216-evoked currents exhibiting the characteristic current-voltage relation of TRPM3. PS-induced calcium responses in hSCDS neurons were reversed in a dose-dependent manner by the flavonoid isosakuranetin and by antiseizure drug primidone. Finally, the µ-opioid receptor agonist DAMGO and the GABAB receptor agonist baclofen inhibited PS-evoked TRPM3 responses in a subset of hSCDS neurons. CONCLUSION AND IMPLICATIONS: These results provide the first direct evidence of functional expression of the pain receptor TRPM3 in human sensory neurons, largely mirroring the channel's properties observed in mouse sensory neurons. hSCDS neurons represent a valuable and readily accessible in vitro model to study TRPM3 regulation and pharmacology in a relevant human cellular context.


Assuntos
Canais de Cátion TRPM , Animais , Gânglios Espinais , Humanos , Hiperalgesia , Camundongos , Técnicas de Patch-Clamp , Células Receptoras Sensoriais
7.
J Pharmacol Toxicol Methods ; 81: 183-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27235787

RESUMO

While current S7B/E14 guidelines have succeeded in protecting patients from QT-prolonging drugs, the absence of a predictive paradigm identifying pro-arrhythmic risks has limited the development of valuable drug programs. We investigated if a human ex-vivo action potential (AP)-based model could provide a more predictive approach for assessing pro-arrhythmic risk in man. Human ventricular trabeculae from ethically consented organ donors were used to evaluate the effects of dofetilide, d,l-sotalol, quinidine, paracetamol and verapamil on AP duration (APD) and recognized pro-arrhythmia predictors (short-term variability of APD at 90% repolarization (STV(APD90)), triangulation (ADP90-APD30) and incidence of early afterdepolarizations at 1 and 2Hz to quantitatively identify the pro-arrhythmic risk. Each drug was blinded and tested separately with 3 concentrations in triplicate trabeculae from 5 hearts, with one vehicle time control per heart. Electrophysiological stability of the model was not affected by sequential applications of vehicle (0.1% dimethyl sulfoxide). Paracetamol and verapamil did not significantly alter anyone of the AP parameters and were classified as devoid of pro-arrhythmic risk. Dofetilide, d,l-sotalol and quinidine exhibited an increase in the manifestation of pro-arrhythmia markers. The model provided quantitative and actionable activity flags and the relatively low total variability in tissue response allowed for the identification of pro-arrhythmic signals. Power analysis indicated that a total of 6 trabeculae derived from 2 hearts are sufficient to identify drug-induced pro-arrhythmia. Thus, the human ex-vivo AP-based model provides an integrative translational assay assisting in shaping clinical development plans that could be used in conjunction with the new CiPA-proposed approach.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Adulto , Fármacos Cardiovasculares/farmacologia , Interpretação Estatística de Dados , Descoberta de Drogas , Eletrocardiografia/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Coração/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Valor Preditivo dos Testes , Medição de Risco , Razão Sinal-Ruído , Adulto Jovem
8.
Lab Chip ; 14(18): 3556-63, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25029952

RESUMO

We present a droplet-based surface acoustic wave (SAW) system designed to viably detach biological cells from a surface and sort cell types based on differences in adhesion strength (adhesion contrast) without the need to label cells with molecular markers. The system uses modulated SAW to generate pulsatile flows in the droplets and efficiently detach the cells, thereby minimizing the SAW excitation power and exposure time. As a proof of principle, the system shows efficient sorting of HEK 293 from A7r5 cells based on adhesion contrast. Results are obtained in minutes with sorting purity and efficiency reaching 97% and 95%, respectively.


Assuntos
Separação Celular , Técnicas Analíticas Microfluídicas , Som , Separação Celular/instrumentação , Separação Celular/métodos , Células HEK293 , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
9.
Biosens Bioelectron ; 50: 125-31, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23845690

RESUMO

Surface plasmon resonance (SPR) has developed into a powerful approach for label-free monitoring of cellular behavior. Most cellular responses, however, involve a complex cascade of molecular events which makes identifying the specific components of cellular behavior dynamics contributing to the aggregate SPR signal problematic. Recently, a number of groups have used surface plasmon-enhanced fluorescence (SPEF) microscopy on living cells. In this work, we show that SPEF microscopy can be used to identify the molecular mechanisms responsible for SPR detection of cellular processes. By specifically labeling the actin cytoskeleton in human epithelial kidney cells (HEK 293) and rat vascular smooth muscle cells (A7r5), we correlate cell reorganization observed in SPEF with SPR signal variations reflecting aggregate cellular changes. HEK 293 cells stimulated with angiotensin-II exhibited transient contraction, appearing as an SPR signal decrease with a subsequent increase above the initial baseline. SPEF micrographs showed a decrease in cellular area followed by actin densification and cell spreading. A7r5 stimulated with Latrunculin A showed actin cytoskeleton depolymerization, generating a steady SPR signal decrease, with SPEF micrographs showing extensive collapse of cell actin structures. We observed that SPR monitoring of cellular response is strongly dependent on minute variations in cellular footprint on the substrate as well as changes in the molecular density in the basal portions of the cells. Therefore, combining SPR with imaging of selective fluorescent markers by SPEF allows a more comprehensive deconvolution of the cellular signal in relation to molecular events within the cells.


Assuntos
Microscopia de Fluorescência/métodos , Ressonância de Plasmônio de Superfície/métodos , Animais , Linhagem Celular , Sobrevivência Celular , Células HEK293 , Humanos , Miócitos de Músculo Liso/citologia , Ratos
10.
J Biomed Opt ; 14(5): 054042, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19895143

RESUMO

In the quest for the development of an all-optical biosensor for rapid detection and typing of viral pathogens, we investigate biosensing architectures that take advantage of strong photoluminescence emission from III-V quantum semiconductors (QS). One of the key elements in the development of such a biosensor is the ability to attach various analytes to GaAs--a material of choice for capping III-V QS of our interest. We report on the study of biofunctionalization of GaAs (001) with polyethylene-glycol (PEG) thiols and the successful immobilization of influenza A virus. A diluted solution of biotinylated PEG thiols in OH-terminated PEG thiols is used to form a network of sites for the attachment of neutravidin. Biotinylated polyclonal influenza A antibodies are applied to investigate the process of the immobilization of inactivated influenza A virus. The successful immobilization is demonstrated using atomic force microscopy and fluorescence microscopy measurements.


Assuntos
Arsenicais/química , Materiais Biocompatíveis/química , Bioensaio/métodos , Técnicas Biossensoriais/métodos , Gálio/química , Imunoensaio/métodos , Vírus da Influenza A/química , Vírus da Influenza A/fisiologia , Adesividade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA