Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 60(22): 3890-3915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31542935

RESUMO

The physicochemical properties of starch can be modified by hydrothermal treatments, inducing changes of dough and final product properties. The effect of these treatments depends on the temperature, the starch-moisture ratio and the exposure time. The most used hydrothermal treatments applied on cereals and pseudocereals starches and flours are heat moisture treatment (HMT) and annealing (ANN). The differences between HMT and ANN consist of working temperatures and moisture content. In HMT the treatment temperature is above the gelatinization temperature, while in ANN it is comprised between the gelatinization temperature and the glass transition. This paper aims to summarize the influence of these thermal treatments on the starches (crystallinity, swelling and water absorption, thermal, gelatinization, pasting, retrogradation, and digestibility properties) and the impact on the rheological and textural characteristics of dough and final product. This review highlights the possibility to use modified starches and treated flours in food products development and to evaluate the effects of hydrothermal treatments on starch and flour functionality.


Assuntos
Farinha , Amido , Temperatura Alta , Temperatura , Água
2.
Compr Rev Food Sci Food Saf ; 19(5): 2473-2505, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33336974

RESUMO

Wine making industry generates high quantities of valuable byproducts that can be used to enhance foods in order to diminish the environmental impact and to obtain more economic benefits. Grape byproducts are rich in phenolic compounds and dietary fiber, which make them suitable to improve the nutritional value of bakery, pastry, and pasta products. The viscoelastic behavior of dough and the textural and the sensory characteristics of baked goods and pasta containing grape byproducts depend on the addition level and particle size. Thus, an optimal dose of a finer grape byproducts flour must be found in order to minimize the negative effects such as low loaf volume and undesirable sensory and textural characteristics they may have on the final product quality. In the same time, an enrichment of the nutritional and functional value of the product by increasing the fiber and antioxidant compounds contents is desired. The aim of this review was to summarize the effects of the chemical components of grape byproducts on the nutritional, functional, rheological, textural, physical, and sensory characteristics of the baked goods and pasta. Further researches about the impact of foods enriched with grape byproducts on the human health, about molecular interactions between components, and about the effects of grape pomace compounds on the shelf life of baked goods and pasta are recommended.


Assuntos
Pão , Vitis/química , Antioxidantes/análise , Fibras na Dieta , Farinha , Alimentos Fortificados , Valor Nutritivo , Fenóis/análise
3.
J Food Sci Technol ; 53(12): 4149-4158, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28115755

RESUMO

The aim of this study was to assess the effects of brown flaxseed and golden flaxseed on the water absorption and the rheological parameters of wheat flour. The rheological properties were evaluated by the Mixolab. The optimum parameters were identified for high quality flaxseed-wheat composite flour bread. Each predictor variable was tested at five levels. The microstructure of dough was assessed by epifluorescence light microscopy. The substitution of 4.81/100 g for brown flaxseed and 5.07/100 g for golden flaxseed was found optimal. At the optimum level of brown and golden flaxseed, the water absorption of 55.07/100 g, dough development time of 1.28 min and dough stability of 10.04 min was observed. In terms of protein quality the optimum values were 0.41 N m for C2 and 0.69 for C1-2, and in terms of starch characteristics they were 1.56 N m for C3, 1.14 for C3-2, 1.33 N m for C4, 0.20 for C3-4, 1.97 N m for C5 and 0.60 for C5-4.

4.
Int J Biol Macromol ; 265(Pt 2): 131063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521297

RESUMO

This study assessed the influence of drying pretreatment and extraction conditions (type of acid and particle size of plant material) on the yield and physicochemical properties of pectin from sugar beet flakes resulted as by-product of sugar beet processing in the sugar industry. The results indicated that the drying conditions (hot-air drying and lyophilization) affected the extraction yield, the chemical composition of pectin, its color, degree of methylation and acetylation, molecular weight, and its rheological and emulsifying properties. The best results for pectin yield (16.20%), galacturonic acid content (91.19 g/100 g), degree of methylation and acetylation (66.93 and 23.87%), and molecular weight (3.89 × 105 g/mol) were obtained when sugar beet flakes were pretreated by hot-air drying, and the extraction was made with citric acid using plant material with particle sizes of 125-200 µm. This pectin also had high emulsion activity (51.42%) and emulsion stability (88.03%). The FT-IR spectra were similar, while pectin thermal behavior was affected by the drying pretreatment and extraction conditions. The results of this study showed that from this by-product of the sugar industry it can be extracted high quality pectin with rheological and emulsifying properties that are superior to commercial citrus and apple pectin.


Assuntos
Beta vulgaris , Pectinas , Pectinas/química , Beta vulgaris/química , Emulsões , Espectroscopia de Infravermelho com Transformada de Fourier , Liofilização , Açúcares
5.
Gels ; 10(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667647

RESUMO

Sugar beet flakes, a by-product of the sugar industry, were used as a source for pectin extraction that was performed using conventional citric acid extraction (CE) and two non-conventional extraction techniques-microwave-assisted extraction (MAE) and pulsed ultrasound-assisted extraction (PUAE). The influence of extraction conditions was studied for each technique based on pectin yield and galacturonic acid content, and spectroscopic, chromatographic and colorimetric methods were used for pectin characterization. Better results for pectin yield were achieved through CE (20.80%), while higher galacturonic acid content was measured in pectin extracted using PUAE (88.53 g/100 g). Pectin extracted using PUAE also presented a higher degree of methylation and acetylation. A significant increase in the molecular weight of pectin was observed for the PUAE process (7.40 × 105 g/mol) by comparison with conventional extraction (1.18 × 105 g/mol). Hydrogels and cryogels prepared with pectin from sugar beet flakes also showed differences in physicochemical parameters determined by the method of pectin extraction. Hydrogels had higher bulk density values irrespective of the pectin extraction method, and overall lower values of the textural parameters. Cryogels prepared with pectin from CE showed higher values of the textural parameters of hardness, adhesiveness, cohesiveness, gumminess and chewiness, while gels obtained with pectin from MAE and PUAE had higher thermal stability. The results of this study prove that sugar beet flakes can be considered a potential source for pectin production, and the extracted pectin is suitable for obtaining hydrogels and cryogels with physicochemical parameters comparable to the commercial citrus and apple pectin available on the market.

6.
Plants (Basel) ; 12(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840046

RESUMO

One of the food industry's challenges is to enhance bread quality from a nutritional point of view without impacting negatively sensorial characteristics and consumer decisions on product choice. This study aimed to assess the baking characteristics of wheat bread supplemented with quinoa flour (QF) of large, medium and small particle sizes at typical doses previously established based on an optimization process, and to evaluate the optimal bread from a physical, textural, nutritional, and sensorial point of view. The results showed a decrease in the Falling number index, water absorption, dough stability, speed of protein weakening, dough extensibility, and creep-recovery compliances for optimal wheat-quinoa composite samples with large and medium particle sizes; meanwhile, for the samples with small particle sizes an opposite trend was recorded, with the exception of dough extensibility. Dough fermentation parameters and bread volume rose for all optimal formulations, while firmness decreased compared to wheat bread. All optimal bread samples presented an improved nutritional profile depending on the particle size. The protein content was up to 19% higher, ash up to 13.8%, and lipids up to fifteen times higher. A noticeable enrichment in minerals (mainly K, Mg, Na, Zn, up to 2.3 times) and essential amino acids (with 13.53%) was also obtained for all optimal breads. From an acceptability point of view, the highest score (8.70) was recorded for the optimal bread with a QF of medium particle size. These findings offer processors new information which will be useful for diversifying bakery products with an enhanced nutritional profile.

7.
Gels ; 9(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37367120

RESUMO

Wheat is one of the main crops that is cultivated and consumed in the world. Since durum wheat is less abundant and more expensive than other types, pasta producers can use common wheat by applying various techniques to achieve the desired quality. A heat moisture treatment was applied to common wheat flour, and the effects on dough rheology and texture, and pasta cooking quality, color, texture, and resistant starch content were evaluated. The results revealed that heat moisture treatment temperature and moisture content induced a proportional increase in visco-elastic moduli, dough firmness, pasta cooking solids loss, and luminosity, as they were higher compared to the control. The breaking force of uncooked pasta decreased when the flour moisture content increased, while the opposite trend was observed for resistant starch content. The highest resistant starch values were obtained for the samples treated at the lowest temperature (60 °C). Significant correlations (p < 0.05) were obtained between some of the textural and physical characteristics analyzed. The studied samples can be grouped in three clusters characterized by different properties. Heat moisture treatment is a convenient physical modification of starch and flours that can be employed in the pasta industry. These results underline the opportunity to enhance common pasta processing and final product functionality by using a green and non-toxic technique to develop new functional products.

8.
Foods ; 12(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107525

RESUMO

This study explored the effect of substituting wheat flour (WF) with distinctive optimal doses of buckwheat flour (BF) corresponding to large, medium, and small particle sizes (PS), previously established based on an optimization process, on composite flour characteristics, dough rheology, and bread quality. The optimal dose for each PS was established in a previous study. The highest value for protein, lipid, mineral, and amino acids was found in the optimal composite flour with medium PS, with significant differences between those with large and small PS. The addition of BF in WF at doses corresponding to each fraction provides optimum rheological properties, with the large and medium PS providing higher performance compared to the small one. The same tendency was observed for volume and texture parameters of bread made from optimal composite flours with medium and large PS, respectively, but the crust and crumb lightness presented lower values than bread with small PS. Regarding the bread nutritional profile, the sample with medium PS possessed the highest protein, lipid, and ash content. Compared to the wheat bread, a considerably higher amino acid content, up to 21.22%, was found in bread made from optimal composite flours with medium and small PS, respectively. The bread samples with medium and large PS, respectively were superior in minerals, the value being up to 2.63 times higher compared to the control. Sensory characteristics results revealed that the bread samples containing 9.13% large and 10.57% medium PS were the most preferred by panelists. The results of this research make an important base to suitably develop wheat-buckwheat bread applications in the future.

9.
Antioxidants (Basel) ; 12(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37507991

RESUMO

The demand for healthy ready-to-eat foods like snacks is increasing. Physical modification of vegetal food matrices through extrusion generates significant changes in the chemical composition of the final product. There is a great variety of food matrices that can be used in extrusion, most of them being based on cereals, legumes, fruits, vegetables, or seeds. The aim of this review was to summarize the main effects of the extrusion process on the bioactive compounds content, namely phenolics, terpenes, vitamins, minerals, and fibers of vegetal mixes, as well as on their biological activity. The literature reported contradictory results regarding the changes in bioactive compounds after extrusion, mainly due to the differences in the processing conditions, chemical composition, physicochemical properties, and nutritional value of the extruded material and quantification methods. The thermolabile phenolics and vitamins were negatively affected by extrusion, while the fiber content was proved to be enhanced. Further research is needed regarding the interactions between bioactive components during extrusion, as well as a more detailed analysis of the impact of extrusion on the terpenes since there are few papers dealing with this aspect.

10.
Foods ; 12(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37297492

RESUMO

Heat treatment of sorghum kernels has the potential to improve their nutritional properties. The goal of this study was to assess the impact of dry heat treatment at two temperatures (121 and 140 °C) and grain fractionation, on the chemical and functional properties of red sorghum flour with three different particle sizes (small, medium, and large), for process optimization. The results showed that the treatment temperature had a positive effect on the water absorption capacity, as well as the fat, ash, moisture and carbohydrate content, whereas the opposite tendency was obtained for oil absorption capacity, swelling power, emulsion activity and protein and fiber content. Sorghum flour particle size had a positive impact on water absorption capacity, emulsion activity and protein, carbohydrate and fiber content, while oil absorption capacity, swelling power and fat, ash and moisture content were adversely affected. The optimization process showed that at the treatment temperature at 133 °C, an increase in fat, ash, fiber and carbohydrate content was experienced in the optimal fraction dimension of red sorghum grains. Moreover, the antioxidant performance showed that this fraction produced the best reducing capability when water was used as an extraction solvent. Starch digestibility revealed a 22.81% rise in resistant starch, while the thermal properties showed that gelatinization enthalpy was 1.90 times higher compared to the control sample. These findings may be helpful for researchers and the food industry in developing various functional foods or gluten-free bakery products.

11.
Foods ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36981241

RESUMO

This study analyzes the possibility of using soybeans as an addition to the main ingredients used to make bread, with the aim of improving its quality characteristics. To maximize the nutritional profile of soybeans they were subjected to the germination and lyophilization process before being used in bread making. The addition levels of 5%, 10%, 15%, and 20% germinated soybean flour (GSF) on dough rheology and bread quality were used. From the rheology point of view, the GSF addition had the effect of decreasing the values of the creep and recovery parameters: JCo, JCm, µCo, Jmax, JRo, JRm, and Jr. At the same time, the rheological parameters λC and λR increased. The GSF addition did not affect dough homogeneity as may be seen from EFLM analysis. Regarding the quality of the bread, it may be concluded that a maximum of 15% GSF addition in wheat flour had a desirable effect on loaf volume, porosity, elasticity, and sensory properties of the bread. The bread samples with GSF additions showed a higher brightness and a less pronounced red and yellow tint. When the percentage of GSF in wheat flour increased, the value of the firmness parameter increased and the value of the gumminess, cohesiveness, and resilience parameters decreased. The addition of GSF had a desirable influence on the crumb structure of the bread samples. Thus, taking into account the results of the determinations outlined above, it can be stated that GSF addition in wheat flour leads to bread samples with good quality characteristics.

12.
Front Pharmacol ; 14: 1198970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554989

RESUMO

This review aims to measure the different aspects of summer savory including biological activity, medicinal properties, nutritional value, food application, prospective health benefits, and its use as an additive in broiler feed. Furthermore, toxicity related to this is also overviewed. Summer savory leaves are abundant in total phenolic compounds (rosmarinic acid and flavonoids) that have a powerful antioxidant impact. Rosmarinic (α-O-caffeoyl-3,4-dihydroxy-phenyl lactic) acid has been identified in summer savory as a main component. According to phytochemical investigations, tannins, volatile oils, sterols, acids, gums, pyrocatechol, phenolic compounds, mucilage, and pyrocatechol are the primary compounds of Satureja species. Summer savory extract shows considerable biological potential in antioxidant, cytotoxic, and antibacterial assays. Regarding antioxidant activity, summer savory extract displays an inhibitory effect on lipid peroxidation. Summer savory also has Fe (III) reductive and free radical scavenging properties and contains minerals and vitamins. Summer savory has important biological properties, including antimicrobial activity and antioxidant activity, and protective effects against Jurkat T Cells, Alzheimer's disease, cancer, infection, cardiovascular diseases, diabetes, and cholesterol. The leaves and stems of this plant are employed in the food, feed, and pharmacological industries due to their antioxidant properties and substantial nutritional content. Conclusively, summer savory is widely considered beneficial for human health due to its versatile properties and medicinal use.

13.
J Sci Food Agric ; 92(10): 2162-70, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22318886

RESUMO

BACKGROUND: In bread-making technology, α-amylase activity is routinely measured with a Falling Number device to predict wheat flour quality. The aim of this study was to determine the possibility of using Mixolab parameters to assess the Falling Number (FN) index. The effects of different doses of fungal α-amylase addition on the Mixolab characteristics and FN index values were investigated. RESULTS: Principal component analysis was performed in order to illustrate the relationships between the Mixolab parameters and the FN index. To highlight the linear combination between the FN index values and the Mixolab parameters used to evaluate starch pasting properties (C3, C4, C5 and point differences C34 and C54), a multivariate prediction model was developed. Greatest precision (R = 0.728) was obtained for the linear regression FN = f(C4, C54) model. This model was tested on a different sample set than the one on which it was built. A high correlation was obtained between predictive model and measured FN index values (r = 0.896, P = 0.01). CONCLUSION: The model provides a framework to predict the evolution of the FN index, which is predicted by the torque for cooking stability (C4) and the difference between points C5 and C4 (C54). The obtained results suggested that the Mixolab device could be a reliable instrument for evaluation of the FN index values.


Assuntos
Pão/análise , Farinha/análise , Análise de Alimentos/métodos , Fungos/enzimologia , Amido/química , alfa-Amilases/metabolismo , Culinária , Farinha/normas , Humanos , Modelos Lineares , Análise Multivariada , Triticum
14.
J Sci Food Agric ; 92(3): 638-44, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21919003

RESUMO

BACKGROUND: In Romania, the Alveograph is the most used device to evaluate the rheological properties of wheat flour dough, but lately the Mixolab device has begun to play an important role in the breadmaking industry. These two instruments are based on different principles but there are some correlations that can be found between the parameters determined by the Mixolab and the rheological properties of wheat dough measured with the Alveograph. RESULTS: Statistical analysis on 80 wheat flour samples using the backward stepwise multiple regression method showed that Mixolab values using the 'Chopin S' protocol (40 samples) and 'Chopin + ' protocol (40 samples) can be used to elaborate predictive models for estimating the value of the rheological properties of wheat dough: baking strength (W), dough tenacity (P) and extensibility (L). The correlation analysis confirmed significant findings (P < 0.05 and P < 0.01) between the parameters of wheat dough studied by the Mixolab and its rheological properties measured with the Alveograph. CONCLUSION: A number of six predictive linear equations were obtained. Linear regression models gave multiple regression coefficients with R²(adjusted) > 0.70 for P, R²(adjusted) > 0.70 for W and R²(adjusted) > 0.38 for L, at a 95% confidence interval.


Assuntos
Pão/análise , Farinha/análise , Qualidade dos Alimentos , Modelos Químicos , Absorção Fisico-Química , Fenômenos Químicos , Culinária , Manipulação de Alimentos , Inspeção de Alimentos/instrumentação , Glutens/análise , Glutens/química , Modelos Lineares , Fenômenos Mecânicos , Estabilidade Proteica , Reprodutibilidade dos Testes , Reologia/instrumentação , Romênia , Água/análise , Água/química
15.
Sci Rep ; 12(1): 7883, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552500

RESUMO

The aim of this research is to investigate the molecular features and microstructure of amaranth flour (AF) fractions and their partial replacement effect of wheat flour (WF) on the chemical composition, dough dynamic rheology, technological and sensory characteristics of bread. The microstructure and molecular characteristics of AF were depending on their particle size (PS). When WF replacement increased and PS decreased the composite flour was richest in protein, lipids, and ash, while the moisture and carbohydrates of these flours decreased. Dynamic rheological behavior revealed significant variations depending on PS and replacement level. Bread volume and firmness increased when more than 15% AF from large PS replaced WF, while medium and small PS at 5-15% replacements was increased the loaf porosity. Chroma values decreased and samples became darker when the replacement level increased. Moreover, replacement of WF with various AF fractions impacted bread sensory characteristics, obtaining better acceptance for large and medium PS up to 10%.


Assuntos
Pão , Farinha , Tamanho da Partícula , Reologia , Triticum/química
16.
Foods ; 11(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230058

RESUMO

The present study analyzed the effects of germinated lentil flour (LGF) addition at different levels in wheat flour (2.5%, 5%, 7.5%, and 10%), on dough rheological behavior, dough microstructure, and bread quality. Creep-recovery tests showed that the dough samples with high levels of LGF addition presented a higher resistance to flow deformability of the dough. Dough microstructure as analyzed using EFLM showed an increase in the protein area (red color) and a decrease in the starch (green color) amount with the increased level of LGF addition in the wheat flour. It was found that the LGF addition led to the improvement of the porosity, specific volume, and elasticity of the bread samples. The breads with LGF addition were darker and had a slightly reddish and yellowish tint. The bread textural parameters highlighted significant (p < 0.05) higher values for firmness and gumminess and significant (p < 0.05) lower ones for cohesiveness and resilience for the bread with LGF addition when compared with the control. The bread samples with a 2.5% and 5% addition had a more dense structure of the crumb pores. Regarding sensory evaluation, the bread samples with LGF addition in the wheat flour were well appreciated by the consumers. The addition also was desirable due to the fact that it supplemented bread with a greater amount of protein and minerals due to the composition of lentil grains. Therefore, LGF could be successfully used as an ingredient for bread making in order to obtain bread with an improved quality.

17.
Foods ; 12(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613349

RESUMO

Amaranth is an underutilized pseudocereal that can be used to supplement wheat flour (WF) in order to improve the nutritional quality of bread. Bread digestibility is impacted by particle size which produces different nutritional properties. This research aims to evaluate the baking characteristics of optimal wheat−amaranth composite flour for each studied amaranth flour (AF) particle size at doses previously established based on an optimization process and to characterize from a physical, textural, nutritional, and sensorial point of view the obtained bread. The results revealed that the optimal wheat−amaranth composite flour with medium and small particle size, respectively showed a slightly lower α-amylase activity, while dough development time was significantly higher compared to the WF. A significant (p < 0.05) decrease was observed in the elasticity, deformation energy, and dynamic rheological parameters of the optimal composite dough for all the particle sizes, whereas fermentation parameters showed higher values compared to the control, indicating the ability of the gluten structure in large, medium, and small particle sizes of AF to hold the gas and to expand without collapsing. The physical, textural, and especially nutritional characteristics of the optimal WF-AF bread were enhanced. The sensory evaluation results revealed high scores (8.70) for the acceptability of optimal bread with a medium particle size as compared to wheat bread (8.25). The protein and ash content of the optimal breads with large, medium, and small AF particle sizes, respectively, increased significantly, from 8.92 to 10.58%, and 0.82 to 0.99%, respectively, relative to the wheat flour bread (8.35% and 0.72%, respectively). The mineral content was up to two times higher in the optimal breads compared to wheat flour bread. The findings generated from this study are helpful in bakery industry for designing products with enhanced nutritional properties and for introducing new products to the market.

18.
Plants (Basel) ; 11(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406834

RESUMO

Usnea genus (Parmeliaceae, lichenized Ascomycetes) is a potent phytomedicine, due to phenolic secondary metabolites, with various pharmacological effects. Therefore, our study aimed to explore the antioxidant, cytotoxic, and rheological properties of Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) extract in canola oil (UBO) compared to cold-pressed canola seed oil (CNO), as a green solvent used for lichen extraction, which has phytoconstituents. The antiradical activity (AA) of UBO and CNO was investigated using UV-Vis spectrophotometry. Their cytotoxicity was examined in vivo through a brine shrimp lethality (BSL) test after Artemia salina (A. salina) larvae exposure for 6 h to previously emulsified UBO and CNO. The rheological properties of both oil samples (flow behavior, thixotropy, and temperature-dependent viscosity variation) were comparatively analyzed. The obtained results showed that UBO (IC50 = 0.942 ± 0.004 mg/mL) had a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than CNO (IC50 = 1.361 ± 0.008 mg/mL). Both UBO and CNO emulsions induced different and progressive morphological changes to A. salina larvae, incompatible with their survival; UBO cytotoxicity was higher than that of CNO. Finally, in the temperature range of 32-37 °C, the UBO and CNO viscosity and viscoelastic behavior indicated a clear weakening of the intermolecular bond when temperature increases, leading to a more liquid state, appropriate for possible pharmaceutical formulations. All quantified parameters were highly intercorrelated. Moreover, their significant correlation with trace/heavy minerals and phenolic compounds can be observed. All data obtained also suggest a possible synergism between lichen secondary metabolites, minerals, and canola oil phytoconstituents.

19.
Plants (Basel) ; 10(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066588

RESUMO

Grape peels (GP) use in pasta formulation represents an economic and eco-friendly way to create value-added products with multiple nutritional benefits. This study aimed to evaluate the effect of the GP by-product on common wheat flour (Triticum aestivum), dough and pasta properties in order to achieve the optimal level that can be incorporated. Response surface methodology (RSM) was performed taking into account the influence of GP level on flour viscosity, dough cohesiveness and complex modulus, pasta color, fracturability, chewiness, cooking loss, total polyphenols, dietary fibers and resistant starch amounts. The result show that 4.62% GP can be added to wheat flour to obtain higher total polyphenols, resistant starch and dietary fiber contents with minimum negative effects on pasta quality. Flour viscosity, dough cohesiveness, complex modulus and pasta fracturability of the optimal sample were higher compared to the control, while chewiness was lower. Proteins' secondary structures were influenced by GP addition, while starch was not affected. Smooth starch grains embedded in a compact protein structure containing GP fiber was observed. These results show that GP can be successfully incorporated in wheat pasta, offering nutritional benefits by their antioxidants and fiber contents, without many negative effects on the final product's properties.

20.
Foods ; 10(7)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34359409

RESUMO

The objective of this investigation was to evaluate the effects generated by amaranth flour (AF)-of different particle sizes (PS) added to white wheat flour from 0% to 20%-on the proximate composition, dough rheological behavior, and bread technological parameters. The reduction of particle size led to an increased hydration capacity of the wheat-amaranth composite flour, while bulk density decreased. Increasing the amount of AF and decreasing the PS led to a significant increase in protein, lipids, and ash contents, while the moisture and carbohydrates of the composite flour decreased. Increasing AF addition led to an increase in dough tenacity and a decrease in dough extensibility, while the PS had an irregular trend. The large particle size, at 15% and 20% levels of AF in wheat flour, increased significantly (p < 0.001) the dough tenacity and hardness, bread firmness, but decreased bread volume, porosity, and elasticity, while medium and small particles at 5-15% addition levels improved porosity and elasticity of the composite bread. Significant correlations (p < 0.05) were found between proximate composition, dough rheological characteristics, and bread quality for the wheat-amaranth composite flours. The results of this study are an important basis for the development of innovative wheat-amaranth bread recipes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA