Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 229(2): 493-501, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37874918

RESUMO

BACKGROUND: To investigate evidence of residual viral infection, intrathecal immune activation, central nervous system (CNS) injury, and humoral responses in cerebrospinal fluid (CSF) and plasma in patients recovering from coronavirus disease 2019 (COVID-19), with or without neurocognitive post-COVID condition (PCC). METHODS: Thirty-one participants (25 with neurocognitive PCC) underwent clinical examination, lumbar puncture, and venipuncture ≥3 months after COVID-19 symptom onset. Healthy volunteers were included. CSF and plasma severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and spike antigen (N-Ag, S-Ag), and CSF biomarkers of immune activation and neuronal injury were analyzed. RESULTS: SARS-CoV-2 N-Ag or S-Ag were undetectable in all samples and no participant had pleocytosis. We detected no significant differences in CSF and plasma cytokine concentrations, albumin ratio, IgG index, neopterin, ß2M, or in CSF biomarkers of neuronal injury and astrocytic damage. Furthermore, principal component analysis (PCA1) analysis did not indicate any significant differences between the study groups in the marker sets cytokines, neuronal markers, or anti-cytokine autoantibodies. CONCLUSIONS: We found no evidence of ongoing viral replication, immune activation, or CNS injury in plasma or CSF in patients with neurocognitive PCC compared with COVID-19 controls or healthy volunteers, suggesting that neurocognitive PCC is a consequence of events suffered during acute COVID-19 rather than persistent viral CNS infection or residual CNS inflammation.


Assuntos
COVID-19 , Humanos , COVID-19/complicações , SARS-CoV-2 , Sistema Nervoso Central , Astrócitos , Citocinas , Biomarcadores
2.
Clin Proteomics ; 21(1): 41, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879494

RESUMO

BACKGROUND: Gliomas are aggressive malignant tumors, with poor prognosis. There is an unmet need for the discovery of new, non-invasive biomarkers for differential diagnosis, prognosis, and management of brain tumors. Our objective is to validate four plasma biomarkers - glial fibrillary acidic protein (GFAP), neurofilament light (NEFL), matrix metalloprotease 3 (MMP3) and fatty acid binding protein 4 (FABP4) - and compare them with established brain tumor molecular markers and survival. METHODS: Our cohort consisted of patients with benign and malignant brain tumors (GBM = 77, Astrocytomas = 26, Oligodendrogliomas = 23, Secondary tumors = 35, Meningiomas = 70, Schwannomas = 15, Pituitary adenomas = 15, Normal individuals = 30). For measurements, we used ultrasensitive electrochemiluminescence multiplexed immunoassays. RESULTS: High plasma GFAP concentration was associated with GBM, low GFAP and high FABP4 were associated with meningiomas, and low GFAP and low FABP4 were associated with astrocytomas and oligodendrogliomas. NEFL was associated with progression of disease. Several prognostic genetic alterations were significantly associated with all plasma biomarker levels. We found no independent associations between plasma GFAP, NEFL, FABP4 and MMP3, and overall survival. The candidate biomarkers could not reliably discriminate GBM from primary or secondary CNS lymphomas. CONCLUSIONS: GFAP, NEFL, FABP4 and MMP3 are useful for differential diagnosis and prognosis, and are associated with molecular changes in gliomas.

3.
Differentiation ; 130: 7-15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36527791

RESUMO

Fibroblast growth factors (Fgfs) have long been implicated in processes critical to embryonic development, such as cell survival, migration, and differentiation. Several mouse models of organ development ascribe a prosurvival requirement specifically to FGF8. Here, we explore the potential role of prosurvival FGF8 signaling in kidney development. We have previously demonstrated that conditional deletion of Fgf8 in the mesodermal progenitors that give rise to the kidney leads to renal aplasia in the mutant neonate. Deleterious consequences caused by loss of FGF8 begin to manifest by E14.5 when massive aberrant cell death occurs in the cortical nephrogenic zone in the rudimentary kidney as well as in the renal vesicles that give rise to the nephrons. To rescue cell death in the Fgf8 mutant kidney, we inactivate the genes encoding the pro-apoptotic factors BAK and BAX. In a wild-type background, the loss of Bak and Bax abrogates normal cell death and has minimal effect on renal development. However, in Fgf8 mutants, the combined loss of Bak and Bax rescues aberrant cell death in the kidneys and restores some measure of kidney development: 1) the nephron progenitor population is greatly increased; 2) some glomeruli form, which are rarely observed in Fgf8 mutants; and 3) kidney size is rescued by about 50% at E18.5. The development of functional nephrons, however, is not rescued. Thus, FGF8 signaling is required for nephron progenitor survival by regulating BAK/BAX and for subsequent steps involving, as yet, undefined roles in kidney development.


Assuntos
Rim , Néfrons , Camundongos , Animais , Feminino , Gravidez , Proteína X Associada a bcl-2/metabolismo , Néfrons/metabolismo , Apoptose , Diferenciação Celular , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo
4.
Clin Chem Lab Med ; 60(7): 1116-1123, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35475723

RESUMO

OBJECTIVES: Infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative pathogen of coronavirus disease 2019 (COVID-19) presents occasionally with an aberrant autoinflammatory response, including the presence of elevated circulating autoantibodies in some individuals. Whether the development of autoantibodies against self-antigens affects COVID-19 outcomes remains unclear. To better understand the prognostic role of autoantibodies in COVID-19, we quantified autoantibodies against 23 markers that are used for diagnosis of autoimmune disease. To this end, we used serum samples from patients with severe [intensive care unit (ICU)] and moderate (ward) COVID-19, across two to six consecutive time points, and compared autoantibody levels to uninfected healthy and ICU controls. METHODS: Acute and post-acute serum (from 1 to 26 ICU days) was collected from 18 ICU COVID-19-positive patients at three to six time points; 18 ICU COVID-19-negative patients (sampled on ICU day 1 and 3); 21 ward COVID-19-positive patients (sampled on hospital day 1 and 3); and from 59 healthy uninfected controls deriving from two cohorts. Levels of IgG autoantibodies against 23 autoantigens, commonly used for autoimmune disease diagnosis, were measured in serum samples using MSD® U-PLEX electrochemiluminescence technology (MSD division Meso Scale Discovery®), and results were compared between groups. RESULTS: There were no significant elevations of autoantibodies for any of the markers tested in patients with severe COVID-19. CONCLUSIONS: Sample collections at longer time points should be considered in future studies, for assessing the possible development of autoantibody responses following infection with SARS-CoV-2.


Assuntos
Doenças Autoimunes , COVID-19 , Autoanticorpos , Autoantígenos , COVID-19/diagnóstico , Humanos , SARS-CoV-2
5.
JAMA Netw Open ; 5(5): e2213253, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35604688

RESUMO

Importance: Neurologic symptoms are common in COVID-19, but the central nervous system (CNS) pathogenesis is unclear, and viral RNA is rarely detected in cerebrospinal fluid (CSF). Objective: To measure viral antigen and inflammatory biomarkers in CSF in relation to neurologic symptoms and disease severity. Design, Setting, and Participants: This cross-sectional study was performed from March 1, 2020, to June 30, 2021, in patients 18 years or older who were admitted to Sahlgrenska University Hospital, Gothenburg, Sweden, with COVID-19. All patients had CSF samples taken because of neurologic symptoms or within a study protocol. Healthy volunteer and prepandemic control groups were included. Exposure: SARS-CoV-2 infection. Main Outcomes and Measures: Outcomes included CSF SARS-CoV-2 nucleocapsid antigen (N-Ag) using an ultrasensitive antigen capture immunoassay platform and CSF biomarkers of immune activation (neopterin, ß2-microglobulin, and cytokines) and neuronal injury (neurofilament light protein [NfL]). Results: Forty-four patients (median [IQR] age, 57 [48-69] years; 30 [68%] male; 26 with moderate COVID-19 and 18 with severe COVID-19 based on the World Health Organization Clinical Progression Scale), 10 healthy controls (median [IQR] age, 58 [54-60] years; 5 [50%] male), and 41 patient controls (COVID negative without evidence of CNS infection) (median [IQR] age, 59 [49-70] years; 19 [46%] male) were included in the study. Twenty-one patients were neuroasymptomatic and 23 were neurosymptomatic (21 with encephalopathy). In 31 of 35 patients for whom data were available (89%), CSF N-Ag was detected; viral RNA test results were negative in all. Nucleocapsid antigen was significantly correlated with CSF neopterin (r = 0.38; P = .03) and interferon γ (r = 0.42; P = .01). No differences in CSF N-Ag concentrations were found between patient groups. Patients had markedly increased CSF neopterin, ß2-microglobulin, interleukin (IL) 2, IL-6, IL-10, and tumor necrosis factor α compared with controls. Neurosymptomatic patients had significantly higher median (IQR) CSF interferon γ (86 [47-172] vs 21 [17-81] fg/mL; P = .03) and had a significantly higher inflammatory biomarker profile using principal component analysis compared with neuroasymptomatic patients (0.54; 95% CI, 0.03-1.05; P = .04). Age-adjusted median (IQR) CSF NfL concentrations were higher in patients compared with controls (960 [673-1307] vs 618 [489-786] ng/L; P = .002). No differences were seen in any CSF biomarkers in moderate compared with severe disease. Conclusions and Relevance: In this study of Swedish adults with COVID-19 infection and neurologic symptoms, compared with control participants, viral antigen was detectable in CSF and correlated with CNS immune activation. Patients with COVID-19 had signs of neuroaxonal injury, and neurosymptomatic patients had a more marked inflammatory profile that could not be attributed to differences in COVID-19 severity. These results highlight the clinical relevance of neurologic symptoms and suggest that viral components can contribute to CNS immune responses without direct viral invasion.


Assuntos
COVID-19 , Adulto , Antígenos Virais , Biomarcadores/líquido cefalorraquidiano , Estudos Transversais , Feminino , Humanos , Interferon gama , Masculino , Pessoa de Meia-Idade , Neopterina/líquido cefalorraquidiano , Proteínas de Neurofilamentos , RNA Viral , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA