Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Sens J ; 21(21): 23971-23978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970084

RESUMO

We report radiatively coupled arrayed gold nanodisks on invisible substrate (AGNIS) as a cost-effective, high-performance platform for nanoplasmonic biosensing. By substrate undercut, the electric field distribution around the nanodisks has been restored to as if the nanodisks were surrounded by a single medium, thereby provides analyte accessibility to otherwise buried enhanced electric field. The AGNIS substrate has been fabricated by wafer-scale nanosphere lithography without the need for costly lithography. The LSPR blue-shifting behavior synergistically contributed by radiative coupling and substrate undercut have been investigated for the first time, which culminates in a remarkable refractive index sensitivity increase from 207 nm/RIU to 578 nm/RIU. The synergy also improves surface sensitivity to monolayer neutravidin-biotin binding from 7.4 nm to 20.3 nm with the limit of detection (LOD) of neutravidin at 50 fM, which is among the best label-free results reported to date on this specific surface binding reaction. As a potential cancer diagnostic application, extracellular vesicles such as exosomes excreted by cancer and normal cells were measured with a LOD within 112-600 (exosomes/µL), which would be sufficient in many clinical applications. Using CD9, CD63, and CD81 antibodies, label-free profiling has shown increased expression of all three surface antigens in cancer-derived exosomes. This work demonstrates, for the first time, strong synergy of arrayed radiative coupling and substrate undercut can enable economical, ultrasensitive biosensing in the visible light spectrum where high-quality, low-cost silicon detectors are readily available for point-of-care applications.

2.
Adv Nanobiomed Res ; 3(9)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38384588

RESUMO

Blood-circulating exosomes as a disease biomarker have great potential in clinical applications as they contain molecular information about their parental cells. However, label-free characterization of exosomes is challenging due to their small size. Without labeling, exosomes are virtually indistinguishable from other entities of similar size. Over recent years, several techniques have been developed to overcome the existing challenges. This paper demonstrates a new label-free approach based on dynamic PlAsmonic NanO-apeRture lAbel-free iMAging (D-PANORAMA), a bright-field technique implemented on arrayed gold nanodisks on invisible substrates (AGNIS). PANORAMA provides high surface sensitivity and has been shown to count single 25 nm polystyrene beads (PSB) previously. Herein, we show that using the dynamic imaging mode, D-PANORAMA can yield 3-dimensional, sub-diffraction limited localization of individual 25 nm beads. Furthermore, we demonstrate D-PANORAMA's capability to size, count, and localize the 3-dimensional, sub-diffraction limited position of individual exosomes as they bind to the AGNIS surface. We emphasize the importance of both the in-plane and out-of-plane localization, which exploit the synergy of 2-dimensional imaging and the intensity contrast.

3.
Nat Commun ; 11(1): 5805, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199716

RESUMO

Label-free optical imaging of nanoscale objects faces fundamental challenges. Techniques based on propagating surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) have shown promises. However, challenges remain to achieve diffraction-limited resolution and better surface localization in SPR imaging. LSPR imaging with dark-field microscopy on metallic nanostructures suffers from low light throughput and insufficient imaging capacity. Here we show ultra-near-field index modulated PlAsmonic NanO-apeRture lAbel-free iMAging (PANORAMA) which uniquely relies on unscattered light to detect sub-100 nm dielectric nanoparticles. PANORAMA provides diffraction-limited resolution, higher surface sensitivity, and wide-field imaging with dense spatial sampling. Its system is identical to a standard bright-field microscope with a lamp and a camera - no laser or interferometry is needed. In a parallel fashion, PANORAMA can detect, count and size individual dielectric nanoparticles beyond 25 nm, and dynamically monitor their distance to the plasmonic surface at millisecond timescale.

4.
ACS Omega ; 5(50): 32481-32489, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376885

RESUMO

Directed concentrating of micro- and nanoparticles via laser-generated plasmonic microbubbles in a liquid environment is an emerging technology. For effective heating, visible light has been primarily employed in existing demonstrations. In this paper, we demonstrate a new plasmonic platform based on nanoporous gold disk (NPGD) array. Thanks to the highly tunable localized surface plasmon resonance of the NPGD array, microbubbles of controlled size can be generated by near-infrared (NIR) light. Using NIR light provides several key advantages over visible light in less interference with standard microscopy and fluorescence imaging, preventing fluorescence photobleaching, less susceptible to absorption and scattering in turbid biological media, and much reduced photochemistry, phototoxicity, and so forth. The large surface-to-volume ratio of NPGD further facilitates the heat transfer from these gold nanoheaters to the surroundings. While the microbubble is formed, the surrounding liquid circulates and direct microparticles randomly dispersed in the liquid to the bottom NPGD surface, which can be made to yield a unique collection of 3D hollow dome microstructures with bubbles larger than 5 µm. Such capability can also be employed in concentrating suspended colloidal nanoparticles at desirable sites and with the preferred configuration enhancing the sensor performance. Specifically, the interaction among concentrated nanoparticles and their interactions with the underlying substrate have been investigated for the first time. These collections have been characterized using optical microscopy, scanning electron microscopy, hyperspectral localized surface plasmon resonance imaging, and hyperspectral Raman imaging. In addition to various micro- and nanoparticles, the plasmonic microbubbles are also shown to collect biological cells and extracellular nanovesicles such as exosomes. By using a spatial light modulator to project the laser in arbitrary patterns, parallel concentrating can be achieved to fabricate an array of clusters.

5.
ACS Appl Mater Interfaces ; 11(2): 2273-2281, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30569702

RESUMO

We report the first observation of symmetry breaking-induced mode splitting in coupled gold-silver alloy nanodisk array (ANA). According to the plasmonic hybridization picture, the original localized surface plasmon resonance (LSPR) of individual nanodisk is split into a pair of high and low energy modes when placed in between a superstrate and a substrate. Although well studied in single silver nanoparticles, the high energy mode has been largely suppressed in gold nanoparticles, which nevertheless are more chemically robust and have superior environmental stability. Herein, we show that the high energy mode can be partially restored and precisely engineered to ∼540 nm for silver-rich alloy nanodisk which has excellent environmental stability. However, peak broadening and red-shifting occur due to plasmonic dephasing when the nanodisk diameter increases. We next demonstrate that a far-field coupled ANA fabricated by low-cost nanosphere lithography can fully restore the high energy mode with electric field concentration extended into the superstrate, thereby imparting greater sensitivity to local refractive index changes. The high energy mode at 540 nm is of key importance for color change detection using low-cost RGB cameras/human vision and broadband light sources (e.g., the sun). The index sensitivity of ANA is the highest among existing plasmonic arrays (particles or holes) within a similar resonance wavelength region. We demonstrate colorimetric detection of sub-nanomolar and sub-monolayer biotin-streptavidin surface binding with a smartphone camera and a white light lamp. The high performance yet low-cost fabrication and detection technology could potentially result in affordable point-of-care biosensing technologies.


Assuntos
Ligas/química , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Colorimetria/métodos , Humanos
6.
ACS Appl Mater Interfaces ; 11(14): 13499-13506, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30873828

RESUMO

Certain noble metal nanostructures as heterogeneous photocatalysts have drawn significant attention in the recent past because of their unique optical properties which lead to the excitation of localized surface plasmon resonance (LSPR). The LSPR concentrates electromagnetic fields to the surfaces and its relaxation processes can convert photon energy to energetic charge carriers or heat, which can be subsequently harvested to enhance surface catalysis. Here, we report the catalytic performance of a novel plasmonic nanostructure, disk-shaped nanoporous gold (NPG) nanoparticles or simply NPG disks, using a well-tested reduction pathway of resazurin to resorufin. We show that the catalytic reaction rate of NPG disks is enhanced by 10-fold upon external light illumination because of the excitation of LSPR. The plasmon-enhanced catalytic reaction follows a linear-to-superlinear transition in the rate dependence on the input light power. In addition, the light input results in a room temperature reaction rate equivalent to that of an ambient temperature of 70 °C. Together, the results support that hot charge carriers play the dominant role in the enhancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA