Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 250(1): 107-119, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465124

RESUMO

Sustained expression of FOXM1 is a hallmark of nearly all human cancers including squamous cell carcinomas of the head and neck (HNSCC). HNSCCs partially preserve the epithelial differentiation program, which recapitulates fetal and adult traits of the tissue of tumor origin but is deregulated by genetic alterations and tumor-supporting pathways. Using shRNA-mediated knockdown, we demonstrate a minimal impact of FOXM1 on proliferation and migration of HNSCC cell lines under standard cell culture conditions. However, FOXM1 knockdown in three-dimensional (3D) culture and xenograft tumor models resulted in reduced proliferation, decreased invasion, and a more differentiated-like phenotype, indicating a context-dependent modulation of FOXM1 activity in HNSCC cells. By ectopic overexpression of FOXM1 in HNSCC cell lines, we demonstrate a reduced expression of cutaneous-type keratin K1 and involucrin as a marker of squamous differentiation, supporting the role of FOXM1 in modulation of aberrant differentiation in HNSCC. Thus, our data provide a strong rationale for targeting FOXM1 in HNSCC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Diferenciação Celular , Proliferação de Células , Proteína Forkhead Box M1/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos Nus , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carga Tumoral
2.
J Biol Chem ; 288(31): 22527-41, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23775078

RESUMO

The treatment of advanced prostate cancer (PCa) remains a challenge. Identification of new molecular mechanisms that regulate PCa initiation and progression would provide targets for the development of new cancer treatments. The Foxm1 transcription factor is highly up-regulated in tumor cells, inflammatory cells, and cells of tumor microenvironment. However, its functions in different cell populations of PCa lesions are unknown. To determine the role of Foxm1 in tumor cells during PCa development, we generated two novel transgenic mouse models, one exhibiting Foxm1 gain-of-function and one exhibiting Foxm1 loss-of-function under control of the prostate epithelial-specific Probasin promoter. In the transgenic adenocarcinoma mouse prostate (TRAMP) model of PCa that uses SV40 large T antigen to induce PCa, loss of Foxm1 decreased tumor growth and metastasis. Decreased prostate tumorigenesis was associated with a decrease in tumor cell proliferation and the down-regulation of genes critical for cell proliferation and tumor metastasis, including Cdc25b, Cyclin B1, Plk-1, Lox, and Versican. In addition, tumor-associated angiogenesis was decreased, coinciding with reduced Vegf-A expression. The mRNA and protein levels of 11ß-Hsd2, an enzyme playing an important role in tumor cell proliferation, were down-regulated in Foxm1-deficient PCa tumors in vivo and in Foxm1-depleted TRAMP C2 cells in vitro. Foxm1 bound to, and increased transcriptional activity of, the mouse 11ß-Hsd2 promoter through the -892/-879 region, indicating that 11ß-Hsd2 was a direct transcriptional target of Foxm1. Without TRAMP, overexpression of Foxm1 either alone or in combination with inhibition of a p19(ARF) tumor suppressor caused a robust epithelial hyperplasia, but was insufficient to induce progression from hyperplasia to PCa. Foxm1 expression in prostate epithelial cells is critical for prostate carcinogenesis, suggesting that inhibition of Foxm1 is a promising therapeutic approach for prostate cancer chemotherapy.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Sequência de Bases , Transformação Celular Neoplásica , Primers do DNA , Células Epiteliais/metabolismo , Proteína Forkhead Box M1 , Humanos , Masculino , Próstata/citologia , Neoplasias da Próstata/patologia , Reação em Cadeia da Polimerase em Tempo Real
3.
BMC Cancer ; 12: 72, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22339894

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent and lethal cancers worldwide and mortality mostly results from loco-regional recurrence and metastasis. Despite its significance, our knowledge on molecular, cellular and environmental mechanisms that drive disease pathogenesis remains largely elusive, and there are limited therapeutic options, with only negligible clinical benefit. METHODS: We applied global gene expression profiling with samples derived from a recently established mouse model for oral cancer recurrence and identified a list of genes with differential expression between primary and recurrent tumors. RESULTS: One differentially expressed gene codes for Myb-binding protein 1a (MYBBP1A), which is known as a transcriptional co-regulator that physically interacts with nuclear transcription factors, such as NFκB and p53. We confirmed significantly reduced MYBBP1A protein levels on tissue sections of recurrent mouse tumors compared to primary tumors by immunohistochemistry, and found aberrant MYBBP1A protein levels also in tumor samples of HNSCC patients. Interestingly, silencing of MYBBP1A expression in murine SCC7 and in human HNSCC cell lines elicited increased migration but decreased cell growth. CONCLUSION: We provide experimental evidence that MYBBP1A is an important molecular switch in the regulation of tumor cell proliferation versus migration in HNSCC and it will be a major challenge for the future to proof the concept whether regulation MYBBP1A expression and/or function could serve as a novel option for anti-cancer therapy.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , Recidiva Local de Neoplasia/genética , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Animais , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA