Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945506

RESUMO

Comparing molecular features, including the identification of genes with differential expression (DE) between conditions, is a powerful approach for characterising disease-specific phenotypes. When testing for DE in single-cell RNA sequencing data, current pipelines first assign cells into discrete clusters (or cell types), followed by testing for differences within each cluster. Consequently, the sensitivity and specificity of DE testing are limited and ultimately dictated by the granularity of the cell type annotation, with discrete clustering being especially suboptimal for continuous trajectories. To overcome these limitations, we present miloDE - a cluster-free framework for differential expression testing. We build on the Milo approach, introduced for differential cell abundance testing, which leverages the graph representation of single-cell data to assign relatively homogenous, 'neighbouring' cells into overlapping neighbourhoods. We address key differences between differential abundance and expression testing at the level of neighbourhood assignment, statistical testing, and multiple testing correction. To illustrate the performance of miloDE we use both simulations and real data, in the latter case identifying a transient haemogenic endothelia-like state in chimeric mouse embryos lacking Tal1 as well as uncovering distinct transcriptional programs that characterise changes in macrophages in patients with Idiopathic Pulmonary Fibrosis. miloDE is available as an open-source R package at https://github.com/MarioniLab/miloDE.

2.
Genome Biol ; 22(1): 333, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872616

RESUMO

scRNA-seq datasets are increasingly used to identify gene panels that can be probed using alternative technologies, such as spatial transcriptomics, where choosing the best subset of genes is vital. Existing methods are limited by a reliance on pre-existing cell type labels or by difficulties in identifying markers of rare cells. We introduce an iterative approach, geneBasis, for selecting an optimal gene panel, where each newly added gene captures the maximum distance between the true manifold and the manifold constructed using the currently selected gene panel. Our approach outperforms existing strategies and can resolve cell types and subtle cell state differences.


Assuntos
RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Transcriptoma , Sequenciamento do Exoma
3.
Nat Commun ; 11(1): 2267, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385287

RESUMO

To faithfully transmit genetic information, cells must replicate their entire genome before division. This is thought to be ensured by the temporal separation of replication and chromosome segregation. Here we show that in 20-40% of unperturbed yeast cells, DNA synthesis continues during anaphase, late in mitosis. High cyclin-Cdk activity inhibits DNA synthesis in metaphase, and the decrease in cyclin-Cdk activity during mitotic exit allows DNA synthesis to finish at subtelomeric and some difficult-to-replicate regions. DNA synthesis during late mitosis correlates with elevated mutation rates at subtelomeric regions, including copy number variation. Thus, yeast cells temporally overlap DNA synthesis and chromosome segregation during normal growth, possibly allowing cells to maximize population-level growth rate while simultaneously exploring greater genetic space.


Assuntos
Segregação de Cromossomos , Cromossomos Fúngicos/metabolismo , DNA Fúngico/metabolismo , Saccharomycetales/metabolismo , Anáfase/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , Genes Fúngicos , Metáfase , Mitose , Taxa de Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Telômero/metabolismo
4.
Elife ; 82019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30638445

RESUMO

Mutations frequently have outcomes that differ across individuals, even when these individuals are genetically identical and share a common environment. Moreover, individual microbial and mammalian cells can vary substantially in their proliferation rates, stress tolerance, and drug resistance, with important implications for the treatment of infections and cancer. To investigate the causes of cell-to-cell variation in proliferation, we used a high-throughput automated microscopy assay to quantify the impact of deleting >1500 genes in yeast. Mutations affecting mitochondria were particularly variable in their outcome. In both mutant and wild-type cells mitochondrial membrane potential - but not amount - varied substantially across individual cells and predicted cell-to-cell variation in proliferation, mutation outcome, stress tolerance, and resistance to a clinically used anti-fungal drug. These results suggest an important role for cell-to-cell variation in the state of an organelle in single cell phenotypic variation.


Assuntos
Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mutação , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , DNA Mitocondrial/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Deleção de Genes , Genômica , Processamento de Imagem Assistida por Computador , Microscopia , Fenótipo , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma
5.
Nat Commun ; 6: 7972, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26268986

RESUMO

Isogenic cells show a large degree of variability in growth rate, even when cultured in the same environment. Such cell-to-cell variability in growth can alter sensitivity to antibiotics, chemotherapy and environmental stress. To characterize transcriptional differences associated with this variability, we have developed a method--FitFlow--that enables the sorting of subpopulations by growth rate. The slow-growing subpopulation shows a transcriptional stress response, but, more surprisingly, these cells have reduced RNA polymerase fidelity and exhibit a DNA damage response. As DNA damage is often caused by oxidative stress, we test the addition of an antioxidant, and find that it reduces the size of the slow-growing population. More generally, we find a significantly altered transcriptome in the slow-growing subpopulation that only partially resembles that of cells growing slowly due to environmental and culture conditions. Slow-growing cells upregulate transposons and express more chromosomal, viral and plasmid-borne transcripts, and thus explore a larger genotypic--and so phenotypic--space.


Assuntos
Proliferação de Células/fisiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Fúngicas/metabolismo , Leveduras/genética , Leveduras/metabolismo , Dano ao DNA , RNA Polimerases Dirigidas por DNA/genética , Citometria de Fluxo/métodos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/fisiologia , RNA Fúngico/genética , RNA Fúngico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA