Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Heart J ; 45(9): 707-721, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243829

RESUMO

BACKGROUND AND AIMS: RNA-based, antibody-based, and genome editing-based therapies are currently under investigation to determine if the inhibition of angiopoietin-like protein-3 (ANGPTL3) could reduce lipoprotein-lipid levels and atherosclerotic cardiovascular disease (ASCVD) risk. Mendelian randomisation (MR) was used to determine whether genetic variations influencing ANGPTL3 liver gene expression, blood levels, and protein structure could causally influence triglyceride and apolipoprotein B (apoB) levels as well as coronary artery disease (CAD), ischaemic stroke (IS), and other cardiometabolic diseases. METHODS: RNA sequencing of 246 explanted liver samples and genome-wide genotyping was performed to identify single-nucleotide polymorphisms (SNPs) associated with liver expression of ANGPTL3. Genome-wide summary statistics of plasma protein levels of ANGPTL3 from the deCODE study (n = 35 359) were used. A total of 647 carriers of ANGPTL3 protein-truncating variants (PTVs) associated with lower plasma triglyceride levels were identified in the UK Biobank. Two-sample MR using SNPs that influence ANGPTL3 liver expression or ANGPTL3 plasma protein levels as exposure and cardiometabolic diseases as outcomes was performed (CAD, IS, heart failure, non-alcoholic fatty liver disease, acute pancreatitis, and type 2 diabetes). The impact of rare PTVs influencing plasma triglyceride levels on apoB levels and CAD was also investigated in the UK Biobank. RESULTS: In two-sample MR studies, common genetic variants influencing ANGPTL3 hepatic or blood expression levels of ANGPTL3 had a very strong effect on plasma triglyceride levels, a more modest effect on low-density lipoprotein cholesterol, a weaker effect on apoB levels, and no effect on CAD or other cardiometabolic diseases. In the UK Biobank, the carriers of rare ANGPTL3 PTVs providing lifelong reductions in median plasma triglyceride levels [-0.37 (interquartile range 0.41) mmol/L] had slightly lower apoB levels (-0.06 ± 0.32 g/L) and similar CAD event rates compared with non-carriers (10.2% vs. 10.9% in carriers vs. non-carriers, P = .60). CONCLUSIONS: PTVs influencing ANGPTL3 protein structure as well as common genetic variants influencing ANGPTL3 hepatic expression and/or blood protein levels exhibit a strong effect on circulating plasma triglyceride levels, a weak effect on circulating apoB levels, and no effect on ASCVD. Near-complete inhibition of ANGPTL3 function in patients with very elevated apoB levels may be required to reduce ASCVD risk.


Assuntos
Aterosclerose , Isquemia Encefálica , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Pancreatite , Acidente Vascular Cerebral , Humanos , Doença Aguda , Doença da Artéria Coronariana/genética , Proteína 3 Semelhante a Angiopoietina , Anticorpos , Apolipoproteínas B/genética , Triglicerídeos
2.
Artigo em Inglês | MEDLINE | ID: mdl-39137439

RESUMO

People use dietary supplements to offset nutritional deficiencies and manage metabolic dysfunction. While the beneficial effect of fish proteins on glucose homeostasis is well established, the ability of fish peptides to replicate the protein findings is less clear. With financial support from a programmatic Canadian Institutes of Health Research (CIHR) team grant, we aimed to identify salmon peptide fractions (SPF) with the potential to mitigate metabolic dysfunction. Additionally the grant aims included assessing whether vitamin D, a nutrient commonly found in salmon could potentiate the beneficial effects of salmon peptides. In parallel, technologies were developed to separate and filter the isolated peptides. We employed an integrative approach that combined nutritional interventions in animal models and human subjects to identify metabolic pathways regulated by salmon peptides and other fish nutrients. This combination of interdisciplinary expertise revealed that a SPF could be a therapeutic tool used in the prevention and management of cardiometabolic diseases. Herein, we present a perspective of our CIHR funded grant that utilized a translational approach to establish the cardiometabolic health effects and mechanisms of action of fish nutrients: from animal models to clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA