Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 103(11): 4623-4632, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30997552

RESUMO

Recent studies from our laboratory indicate that engineered silver nanoparticles can inhibit aflatoxin biosynthesis even at concentrations at which they do not demonstrate antifungal activities on the aflatoxin-producing fungus. Whether such inhibition can be modified by altering the nanoparticles' physical properties remains unclear. In this study, we demonstrate that three differently sized citrated-coated silver nanoparticles denoted here as NP1, NP2, and NP3 (where, sizes of NP1 < NP2 < NP3) inhibit aflatoxin biosynthesis at different effective doses in Aspergillus parasiticus, the plant pathogenic filamentous fungus. Recapping NP2 with polyvinylpyrrolidone coating (denoted here as NP2p) also altered its ability to inhibit aflatoxin production. Dose-response experiments with NP concentrations ranging from 10 to 100 ng mL-1 indicated a non-monotonic relationship between aflatoxin inhibition and NP concentration. The maximum inhibitory concentrations differed between the NP types. NP1 demonstrated maximum inhibition at 25 ng mL-1. Both NP2 and NP3 showed maximum inhibition at 50 ng mL-1, although NP2 resulted in a significantly higher inhibition than NP3. While both NP2 and NP2p demonstrated greater aflatoxin inhibition than NP1 and NP3, NP2p inhibited aflatoxin over a significantly wider concentration range as compared to NP2. Our results, therefore, suggest that nano-fungal interactions can be regulated by altering certain NP physical properties. This concept can be used to design NPs for mycotoxin prevention optimally.


Assuntos
Aflatoxinas/antagonistas & inibidores , Aflatoxinas/biossíntese , Antifúngicos/metabolismo , Aspergillus/efeitos dos fármacos , Metabolismo/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Nanopartículas Metálicas/ultraestrutura , Venenos
2.
Environ Sci Technol ; 51(14): 8085-8093, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28618218

RESUMO

Manufactured silver nanoparticles (Ag NPs) have long been used as antimicrobials. However, little is known about how these NPs affect fungal cell functions. While multiple previous studies reveal that Ag NPs inhibit secondary metabolite syntheses in several mycotoxin producing filamentous fungi, these effects are associated with growth repression and hence need sublethal to lethal NP doses, which besides stopping fungal growth, can potentially accumulate in the environment. Here we demonstrate that citrate-coated Ag NPs of size 20 nm, when applied at a selected nonlethal dose, can result in a >2 fold inhibition of biosynthesis of the carcinogenic mycotoxin and secondary metabolite, aflatoxin B1 in the filamentous fungus and an important plant pathogen, Aspergillus parasiticus, without inhibiting fungal growth. We also show that the observed inhibition was not due to Ag ions, but was specifically associated with the mycelial uptake of Ag NPs. The NP exposure resulted in a significant decrease in transcript levels of five aflatoxin genes and at least two key global regulators of secondary metabolism, laeA and veA, with a concomitant reduction of total reactive oxygen species (ROS). Finally, the depletion of Ag NPs in the growth medium allowed the fungus to regain completely its ability of aflatoxin biosynthesis. Our results therefore demonstrate the feasibility of Ag NPs to inhibit fungal secondary metabolism at nonlethal concentrations, hence providing a novel starting point for discovery of custom designed engineered nanoparticles that can efficiently prevent mycotoxins with minimal risk to health and environment.


Assuntos
Aflatoxinas/química , Aspergillus/efeitos dos fármacos , Nanopartículas Metálicas/química , Aspergillus/metabolismo , Água Corporal , Ácido Cítrico , Nanopartículas , Prata , Purificação da Água
3.
Fungal Genet Biol ; 73: 61-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25312859

RESUMO

Fungal pathogens need regulated mechanical and morphological fine-tuning for pushing through substrates to meet their metabolic and functional needs. Currently very little is understood on how coordinated colony level morphomechanical modifications regulate their behavior. This is due to an absence of a method that can simultaneously map, quantify, and correlate global fluctuations in physical properties of the expanding fungal colonies. Here, we show that three-dimensional ultrasonic reflections upon decoding can render acoustic contrast tomographs that contain information on material property and morphology in the same time scale of one important phytopathogen, Aspergillus parasiticus, at multiple length scales. By quantitative analysis of the changes in acoustic signatures collected as the A. parasiticus colony expands with time, we further demonstrate that the pathogen displays unique acoustic signatures during synthesis and release of its hepatocarcinogenic secondary metabolite, aflatoxin, suggesting an involvement of a multiscale morphomechanical reorganization of the colony in this process. Our studies illustrate for the first time, the feasibility of generating in any invading cell population, four-dimensional maps of global physical properties, with minimal physical perturbation of the specimens. Our developed method that we term quantitative acoustic contrast tomography (Q-ACT), provides a novel diagnostic framework for the identification of in-cell molecular factors and discovery of small molecules that may modulate pathogen invasion in a host.


Assuntos
Aflatoxinas/biossíntese , Aspergillus/fisiologia , Ultrassonografia/métodos , Aspergillus/ultraestrutura , Metabolismo Secundário/fisiologia
4.
Nat Commun ; 15(1): 3310, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632249

RESUMO

Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is a devastating disease that is present in all major soybean-producing regions. The limited availability of resistant germplasm has resulted in a scarcity of commercial soybean cultivars that are resistant to the disease. To date, only the Chinese soybean landrace SX6907 has demonstrated an immune response to ASR. In this study, we present the isolation and characterization of Rpp6907-7 and Rpp6907-4, a gene pair that confer broad-spectrum resistance to ASR. Rpp6907-7 and Rpp6907-4 encode atypic nucleotide-binding leucine-rich repeat (NLR) proteins that are found to be required for NLR-mediated immunity. Genetic analysis shows that only Rpp6907-7 confers resistance, while Rpp6907-4 regulates Rpp6907-7 signaling activity by acting as a repressor in the absence of recognized effectors. Our work highlights the potential value of using Rpp6907 in developing resistant soybean cultivars.


Assuntos
Phakopsora pachyrhizi , Glycine max , Genes de Plantas , Doenças das Plantas/genética
5.
Environ Sci Process Impacts ; 23(11): 1681-1687, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34596193

RESUMO

Indoor flooding is a leading contributor to indoor dampness and the associated mold infestations in the coastal United States. Whether the prevalent mold genera that infest the coastal flood-prone buildings are different from those not flood-prone is unknown. In the current case study of 28 mold-infested buildings across the U.S. east coast, we surprisingly noted a trend of higher prevalence of indoor Aspergillus and Penicillium genera (denoted here as Asp-Pen) in buildings with previous flooding history. Hence, we sought to determine the possibility of a potential statistically significant association between indoor Asp-Pen prevalence and three building-related variables: (i) indoor flooding history, (ii) geographical location, and (iii) the building's use (residential versus non-residential). Culturable spores and hyphal fragments in indoor air were collected using the settle-plate method, and corresponding genera were confirmed using phylogenetic analysis of their ITS sequence (the fungal barcode). Analysis of variance (ANOVA) using Generalized linear model procedure (GLM) showed that Asp-Pen prevalence is significantly associated with indoor flooding as well as coastal proximity. To address the small sample size, a multivariate decision tree analysis was conducted, which ranked indoor flooding history as the strongest determinant of Asp-Pen prevalence, followed by geographical location and the building's use.


Assuntos
Poluição do Ar em Ambientes Fechados , Penicillium , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Aspergillus , Inundações , Fungos , Filogenia , Prevalência
6.
Food Chem Toxicol ; 123: 9-15, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30300722

RESUMO

A mini-survey of 29 different foods produced by 21 different Indian manufacturers was conducted for the presence of aflatoxins B1, B2, G1 and G2, aflatoxin M1 and deoxynivalenol. The products were purchased from local markets in Kolkata, India and commonly used in the complementary feeding of infants and toddlers in India. Using a previously established direct competitive enzyme-linked immunoassay for this analysis we show that 100% of the samples contained aflatoxin M1 at levels exceeding the recommended European Union levels of 25 ng kg-1 by more than an order of magnitude. Also, several (66%) of them contained detectable concentrations of deoxynivalenol with two samples (6.9%) exceeding European Union guidelines for baby food products (200 µg kg-1) and 51.7% samples with DON levels that can lead to dietary intake higher than 1  µg kg-1 recommended by the joint FAO/WHO expert committee on food additives. None of the samples contained aflatoxins B1, B2, G1 and G2. The results, therefore, suggest that complementary feeding can put Indian infants and toddlers at risk of simultaneous exposures to deoxynivalenol and aflatoxin M1 and warrant an urgent in-depth research to track, increase surveillance and reduce mycotoxin contamination of baby foods manufactured in India.


Assuntos
Aflatoxina M1/análise , Contaminação de Alimentos/análise , Tricotecenos/análise , Pré-Escolar , Feminino , Humanos , Índia , Lactente , Alimentos Infantis/análise , Fenômenos Fisiológicos da Nutrição do Lactente , Masculino , Inquéritos e Questionários
7.
Sci Rep ; 9(1): 10520, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324830

RESUMO

Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive compound in Cannabis, which is studied extensively for its medicinal value. A central gap in the science is the underlying mechanisms surrounding THC's therapeutic effects and the role of gut metabolite profiles. Using a mass-spectrometry based metabolomics, we show here that intraperitoneal injection of THC in C57BL/6 mice modulates metabolic profiles that have previously been identified as integral to health. Specifically, we investigated the effects of acute (single THC injection denoted here as '1X') and short -term (five THC injections on alternate days denoted as '5X') THC administration on fecal and intestinal tissue metabolite profiles. Results are consistent with the hypothesis that THC administration alters host metabolism by targeting two prominent lipid metabolism pathways: glycerophospholipid metabolism and fatty acid biosynthesis.


Assuntos
Dronabinol/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolômica , Animais , Biomarcadores , Relação Dose-Resposta a Droga , Dronabinol/administração & dosagem , Ácidos Graxos/biossíntese , Fezes/química , Feminino , Glicerofosfolipídeos/metabolismo , Injeções Intraperitoneais , Mucosa Intestinal/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos
8.
Toxins (Basel) ; 10(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29382166

RESUMO

An aspect of mycotoxin biosynthesis that remains unclear is its relationship with the cellular management of reactive oxygen species (ROS). Here we conduct a comparative study of the total ROS production in the wild-type strain (SU-1) of the plant pathogen and aflatoxin producer, Aspergillus parasiticus, and its mutant strain, AFS10, in which the aflatoxin biosynthesis pathway is blocked by disruption of its pathway regulator, aflR. We show that SU-1 demonstrates a significantly faster decrease in total ROS than AFS10 between 24 h to 48 h, a time window within which aflatoxin synthesis is activated and reaches peak levels in SU-1. The impact of aflatoxin synthesis in alleviation of ROS correlated well with the transcriptional activation of five superoxide dismutases (SOD), a group of enzymes that protect cells from elevated levels of a class of ROS, the superoxide radicals (O2-). Finally, we show that aflatoxin supplementation to AFS10 growth medium results in a significant reduction of total ROS only in 24 h cultures, without resulting in significant changes in SOD gene expression. Our findings show that the activation of aflatoxin biosynthesis in A. parasiticus alleviates ROS generation, which in turn, can be both aflR dependent and aflatoxin dependent.


Assuntos
Aflatoxinas/biossíntese , Aspergillus/metabolismo , Aspergillus/genética , Regulação Fúngica da Expressão Gênica , Mutação , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética
9.
Genome Announc ; 5(30)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751405

RESUMO

Vibrio gazogenes ATCC 43942 has the potential to synthesize a plethora of metabolites which are of clinical and agricultural significance in response to environmental triggers. The complete genomic sequence of Vibrio gazogenes ATCC 43942 is reported herein, contributing to the knowledge base of strains in the Vibrio genus.

10.
Toxins (Basel) ; 9(10)2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023405

RESUMO

Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox (hbx) genes in the aflatoxin-producing ascomycete, Aspergillus flavus, and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1, in two morphologically different A. flavus strains, CA14 and AF70, resulted in complete loss of production of conidia and sclerotia as well as aflatoxins B1 and B2, cyclopiazonic acid and aflatrem. Microscopic examination showed that the Δhbx1 mutants did not produce conidiophores. The inability of Δhbx1 mutants to produce conidia was related to downregulation of brlA (bristle) and abaA (abacus), regulatory genes for conidiophore development. These mutants also had significant downregulation of the aflatoxin pathway biosynthetic genes aflC, aflD, aflM and the cluster-specific regulatory gene, aflR. Our results demonstrate that hbx1 not only plays a significant role in controlling A. flavus development but is also critical for the production of secondary metabolites, such as aflatoxins.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/genética , Genes Homeobox , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , DNA Fúngico/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Indóis/metabolismo , Filogenia , Metabolismo Secundário , Esporos Fúngicos/crescimento & desenvolvimento
11.
Front Microbiol ; 7: 814, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375561

RESUMO

Aflatoxin is a mycotoxin and a secondary metabolite, and the most potent known liver carcinogen that contaminates several important crops, and represents a significant threat to public health and the economy. Available approaches reported thus far have been insufficient to eliminate this threat, and therefore provide the rational to explore novel methods for preventing aflatoxin accumulation in the environment. Many terrestrial plants and microbes that share ecological niches and encounter the aflatoxin producers have the ability to synthesize compounds that inhibit aflatoxin synthesis. However, reports of natural aflatoxin inhibitors from marine ecosystem components that do not share ecological niches with the aflatoxin producers are rare. Here, we show that a non-pathogenic marine bacterium, Vibrio gazogenes, when exposed to low non-toxic doses of aflatoxin B1, demonstrates a shift in its metabolic output and synthesizes a metabolite fraction that inhibits aflatoxin synthesis without affecting hyphal growth in the model aflatoxin producer, Aspergillus parasiticus. The molecular mass of the predominant metabolite in this fraction was also different from the known prodigiosins, which are the known antifungal secondary metabolites synthesized by this Vibrio. Gene expression analyses using RT-PCR demonstrate that this metabolite fraction inhibits aflatoxin synthesis by down-regulating the expression of early-, middle-, and late- growth stage aflatoxin genes, the aflatoxin pathway regulator, aflR and one global regulator of secondary metabolism, laeA. Our study establishes a novel system for generation of aflatoxin synthesis inhibitors, and emphasizes the potential of the under-explored Vibrio's silent genome for generating new modulators of fungal secondary metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA