Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 145(4): 1272-1284.e6, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31983527

RESUMO

BACKGROUND: The World Health Organization estimates that air pollution is responsible for 7 million deaths per annum, with 7% of these attributable to pneumonia. Many of these fatalities have been linked to exposure to high levels of airborne particulates, such as diesel exhaust particles (DEPs). OBJECTIVES: We sought to determine whether exposure to DEPs could promote the progression of asymptomatic nasopharyngeal carriage of Streptococcus pneumoniae to invasive pneumococcal disease. METHODS: We used mouse models and in vitro assays to provide a mechanistic understanding of the link between DEP exposure and pneumococcal disease risk, and we confirmed our findings by using induced sputum macrophages isolated from healthy human volunteers. RESULTS: We demonstrate that inhaled exposure to DEPs disrupts asymptomatic nasopharyngeal carriage of S pneumoniae in mice, leading to dissemination to lungs and blood. Pneumococci are transported from the nasopharynx to the lungs following exposure to DEPs, leading to increased proinflammatory cytokine production, reduced phagocytic function of alveolar macrophages, and consequently, increased pneumococcal loads within the lungs and translocation into blood. These findings were confirmed by using DEP-exposed induced sputum macrophages isolated from healthy volunteers, demonstrating that impaired innate immune mechanisms following DEP exposure are also at play in humans. CONCLUSION: Lung inhaled DEPs increase susceptibility to pneumococcal disease by leading to loss of immunological control of pneumococcal colonisation, increased inflammation, tissue damage, and systemic bacterial dissemination.


Assuntos
Pulmão/imunologia , Macrófagos/imunologia , Nasofaringe/patologia , Material Particulado/efeitos adversos , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/fisiologia , Animais , Bacteriemia , Portador Sadio , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nasofaringe/microbiologia , Fagocitose , Pneumonia Pneumocócica/epidemiologia , Risco , Emissões de Veículos
2.
J Physiol ; 598(22): 5027-5038, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32495367

RESUMO

The E-cigarette market continues to expand at an alarming rate with thousands of flavours available for purchase and continuously evolving devices. Now that it is a multi-billion dollar industry and one without stringent regulation, there is rising concern over the safety of vaping products. Since June 2019, over 2800 cases of E-cigarette-associated acute lung toxicity have been reported in the USA, over 60 of which resulted in death. Many argue that E-cigarettes offer a safer alternative to smoking, but we are evidently far from fully understanding the potential hazards that they pose to respiratory health. Although the risk of an outbreak in the UK has been considered low due to tighter E-cigarette regulations, we cannot fully eliminate the possibility of similar events occurring in the future. With evidence frequently emerging of the harmful effects of E-cigarettes to pulmonary health, there is an urgent need to define the long-term implications of vaping. Studies show that E-cigarette exposure can disrupt pulmonary homeostasis, with reports of gas exchange disturbance, reduced lung function, increased airway inflammation and oxidative stress, downregulation of immunity, and increased risk of respiratory infection. In this review, the latest research on the effect of E-cigarette use on respiratory health will be presented.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Pneumopatias , Vaping , Humanos , Pulmão , Estresse Oxidativo , Vaping/efeitos adversos
3.
Eur Respir J ; 51(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29437942

RESUMO

E-cigarette vapour contains free radicals with the potential to induce oxidative stress. Since oxidative stress in airway cells increases platelet-activating factor receptor (PAFR) expression, and PAFR is co-opted by pneumococci to adhere to host cells, we hypothesised that E-cigarette vapour increases pneumococcal adhesion to airway cells.Nasal epithelial PAFR was assessed in non-vaping controls, and in adults before and after 5 min of vaping. We determined the effect of vapour on oxidative stress-induced, PAFR-dependent pneumococcal adhesion to airway epithelial cells in vitro, and on pneumococcal colonisation in the mouse nasopharynx. Elemental analysis of vapour was done by mass spectrometry, and oxidative potential of vapour assessed by antioxidant depletion in vitroThere was no difference in baseline nasal epithelial PAFR expression between vapers (n=11) and controls (n=6). Vaping increased nasal PAFR expression. Nicotine-containing and nicotine-free E-cigarette vapour increased pneumococcal adhesion to airway cells in vitro Vapour-stimulated adhesion in vitro was attenuated by the PAFR blocker CV3988. Nicotine-containing E-cigarette vapour increased mouse nasal PAFR expression, and nasopharyngeal pneumococcal colonisation. Vapour contained redox-active metals, had considerable oxidative activity, and adhesion was attenuated by the antioxidant N-acetyl cysteine.This study suggests that E-cigarette vapour has the potential to increase susceptibility to pneumococcal infection.


Assuntos
Células Epiteliais/microbiologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Streptococcus pneumoniae/fisiologia , Vaping/efeitos adversos , Adulto , Animais , Aderência Bacteriana , Linhagem Celular , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Estresse Oxidativo , Sistema Respiratório/metabolismo , Sistema Respiratório/microbiologia , Streptococcus pneumoniae/metabolismo
4.
Sci Total Environ ; 888: 164211, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37196967

RESUMO

Air pollution can cause a wide range of serious human diseases. For the informed instigation of interventions which prevent these outcomes there is an urgent need to develop robust in vivo biomarkers which provide insights into mechanisms of toxicity and relate pollutants to specific adverse outcomes. We exemplify for a first time the application of in vivo stress response reporters in establishing mechanisms of air pollution toxicity and the application of this knowledge in epidemiological studies. We first demonstrated the utility of reporter mice to understand toxicity mechanisms of air pollutants using diesel exhaust particles compounds. We observed that nitro-PAHs induced Hmox1 and CYP1a1 reporters in a time- and dose-dependent, cell- and tissue-specific manner. Using in vivo genetic and pharmacological approaches we confirmed that the NRF2 pathway mediated this Hmox1-reporter induction stress reporter activity. We then correlated the activation of stress-reporter models (oxidative stress/inflammation, DNA damage and Ah receptor -AhR- activity) with responses in primary human nasal cells exposed to chemicals present in particulate matter (PM; PM2.5-SRM2975, PM10-SRM1648b) or fresh roadside PM10. To exemplify their use in clinical studies, Pneumococcal adhesion was assessed in exposed primary human nasal epithelial cells (HPNEpC). The combined use of HPNEpC and in vivo reporters demonstrated that London roadside PM10 particles induced pneumococcal infection in HPNEpC mediated by oxidative stress responses. The combined use of in vivo reporter models with human data thus provides a robust approach to define the relationship between air pollutant exposure and health risks. Moreover, these models can be used in epidemiological studies to hazard ranking environmental pollutants by considering the complexity of mechanisms of toxicity. These data will facilitate the relationship between toxic potential and the level of pollutant exposure in populations to be established and potentially extremely valuable tools for intervention studies for disease prevention.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Camundongos , Animais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Emissões de Veículos/análise , Estresse Oxidativo
5.
J Allergy Clin Immunol Glob ; 2(4): 100141, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37781647

RESUMO

Background: Biologic plausibility for the association between exposure to particulate matter (PM) less than 10 µm in aerodynamic diameter (PM10) and coronavirus disease 2019 (COVID-19) morbidity in epidemiologic studies has not been determined. The upregulation of angiotensin-converting enzyme 2 (ACE2), the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) entry receptor on host cells, by PM10 is a putative mechanism. Objective: We sought to assess the effect of PM10 on SARS-CoV-2 infection of cells in vitro. Methods: PM10 from the curbside of London's Marylebone Road and from exhaust emissions was collected by cyclone. A549 cells, human primary nasal epithelial cells (HPNEpCs), SARS-CoV-2-susceptible Vero-E6 and Calu3 cells were cultured with PM10. ACE2 expression (as determined by median fluorescent intensity) was assessed by flow cytometry, and ACE2 mRNA transcript level was assessed by PCR. The role of oxidative stress was determined by N-acetyl cysteine. The cytopathic effect of SARS-CoV-2 (percentage of infection enhancement) and expression of SARS-CoV-2 genes' open reading frame (ORF) 1ab, S protein, and N protein (focus-forming units/mL) were assessed in Vero-E6 cells. Data were analyzed by either the Mann-Whitney U test or Kruskal-Wallis test with the Dunn multiple comparisons test. Results: Curbside PM10 at concentrations of 10 µg/mL or more increased ACE2 expression in A549 cells (P = .0021). Both diesel PM10 and curbside PM10 in a concentration of 10 µg/mL increased ACE2 expression in HPNEpCs (P = .0022 and P = .0072, respectively). ACE2 expression simulated by curbside PM10 was attenuated by N-acetyl cysteine in HPNEpCs (P = .0464). Curbside PM10 increased ACE2 expression in Calu3 cells (P = .0256). In Vero-E6 cells, curbside PM10 increased ACE2 expression (P = .0079), ACE2 transcript level (P = .0079), SARS-CoV-2 cytopathic effect (P = .0002), and expression of the SARS-CoV-2 genes' ORF1ab, S protein, and N protein (P = .0079). Conclusions: Curbside PM10 increases susceptibility to SARS-COV-2 infection in vitro.

6.
Sci Total Environ ; 899: 165647, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37474071

RESUMO

In September 2021 an eruption began of Cumbre Vieja, La Palma (Spain) that lasted 3 months. Previous studies have shown that volcanic ash particles can be associated with adverse effects on human health however, the reasons for this are unclear. Particle shape has been shown to contribute to cellular uptake in prostate cancer cells. Hence we aimed to study 3D structure, elemental composition and effects on cultured lung cells of particles collected from the La Palma volcanic eruption. 3D imaging of PM10 sized and below particles was performed using a LEXT OLS4100 confocal microscope (Olympus Corporation, Japan). A Zeiss EVO 50 (Carl Zeiss AG, Germany) Scanning Electron Microscope (SEM) was used to assess elemental composition. In addition, volcanic particle concentration dose response for pneumococcal adhesion to A549 human alveolar epithelial cells was investigated. Confocal microscopy showed that some PM10 and below sized particles had sharp or angular 3D appearance. SEM x-ray analysis indicated silicate particles with calcium, aluminium and iron. We observed increased colony forming units indicating increased Pneumococcal adhesion due to exposure of cells to volcanic particles. Thus in addition to the toxic nature of some volcanic particles, we suggest that the observed sharp surface particle features may help to explain adverse health effects associated with volcanic eruptions.


Assuntos
Imageamento Tridimensional , Erupções Vulcânicas , Humanos , Erupções Vulcânicas/análise , Espanha , Pulmão , Microscopia Confocal
7.
EBioMedicine ; 80: 104063, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35598440

RESUMO

BACKGROUND: Concentrations of particulate matter less than 10 microns (PM10) on underground railways are higher than those near urban roads. Traffic-related PM10 increases pneumococcal infection via increasing the expression of platelet-activating factor receptor (PAFR), a receptor co-opted by pneumococci to adhere to cells. To date, it is unknown whether underground railway PM10 increases pneumococcal infection. This study sought to determine the effect of London Underground (LU) PM10 on; i) pneumococcal adhesion to airway cells, and ii) susceptibility to pneumococcal disease. METHODS: A549 cells and human primary airway epithelial cells were cultured with 20 µg/mL PM10 from the Bakerloo (B-PM10) and Jubilee (J-PM10) line platforms of Baker Street station. PAFR expression was assessed by flow cytometry, and pneumococcal adhesion by colony forming unit (CFU) counts. Traffic-related PM10 was collected next to a main road near the station's entrance. The PAFR blocker CV3988 and the antioxidant N-acetyl cysteine were used to assess the role of PAFR-mediated pneumococcal adhesion and oxidative stress respectively. Pneumococcal infection of mice was done after exposure to 3×80 µg doses of intranasal LU-PM10. FINDINGS: In A549 cells, human primary nasal cells, and human primary bronchial epithelial cells, B-PM10 and J-PM10 increased PAFR expression and pneumococcal adhesion. Stimulated adhesion was abrogated by CV3988 and N-acetyl cysteine. Traffic-related PM10 stimulated increased adhesion compared with B-PM10. B-PM10 and J-PM10 increased lung and blood CFU and mortality in mice. Treatment of B-PM10-exposed mice with CV3988 reduced blood CFU. INTERPRETATION: LU-PM10 increases pneumococcal adhesion to airway cells and susceptibility to invasive disease in mice. FUNDING: The Medical College of Saint Bartholomew's Hospital Trust, and the UK Medical Research Council Programme Grant (MR/P011284/1).


Assuntos
Material Particulado , Infecções Pneumocócicas , Animais , Linhagem Celular , Cisteína/metabolismo , Humanos , Pulmão/metabolismo , Camundongos , Material Particulado/efeitos adversos , Material Particulado/metabolismo , Streptococcus pneumoniae/metabolismo
8.
J Cyst Fibros ; 20(4): 673-677, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33250436

RESUMO

BACKGROUND: Exposure to particulate matter (PM) air pollution is associated with adverse health outcomes in children with cystic fibrosis (CF). Airway macrophages (AM) phagocytose and retain inhaled PM in vivo, and the area of carbon in AM reflects both inhaled PM dose and phagocytic function. Since airway prostaglandin-E2 (PGE2) is increased in CF, and PGE2 suppresses AM phagocytosis, we sought evidence for PGE2-mediated suppression of AM phagocytosis of inhaled carbonaceous PM in CF. METHODS: After informed consent, urine was obtained from 20 controls and 24 CF children. In the subgroup of older children, at least one induced sputum was done in 20 controls and 19 CF children. Urinary tetranor PGEM, the major metabolite of PGE2, and sputum PGE2 were measured by mass spectrometry. The area of carbon in AM was determined by image analysis. Exposure to PM was assessed by modelling and personal monitoring. The effect of either PGE2 or CF sputum supernatant on phagocytosis of diesel exhaust particle (DEP) by AM was assessed in vitro. Data were analysed by t-test. RESULTS: Both urinary tetranor PGEM (P<0.05), and sputum PGE2 (P<0.05) were increased in CF . Despite no difference in PM exposure between groups, the area of phagocytosed carbon by AM was decreased in children with CF (P<0.01). PGE2 suppressed phagocytosis of DEP by AM from both controls and CF (P<0.0001). CF sputum supernatant suppressed phagocytosis of DEP by AM (P<0.0001) in a PGE2-dependent manner. CONCLUSION: Increased PGE2 in the CF airway suppresses phagocytosis of inhaled PM by AM.


Assuntos
Fibrose Cística , Dinoprostona/fisiologia , Macrófagos/fisiologia , Material Particulado , Fagocitose , Criança , Fibrose Cística/imunologia , Fibrose Cística/urina , Feminino , Humanos , Inalação , Masculino , Material Particulado/análise , Material Particulado/urina , Escarro/química
9.
Environ Sci Pollut Res Int ; 28(23): 30384-30389, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33890224

RESUMO

To date, diesel particulate matter (DPM) has been described as aggregates of spherule particles with a smooth appearing surface. We have used a new colour confocal microscope imaging method to study the 3D shape of diesel particulate matter (DPM); we observed that the particles can have sharp jagged appearing edges and consistent with these findings, 2D light microscopy demonstrated that DPM adheres to human lung epithelial cells. Importantly, the slide preparation and confocal microscopy method applied avoids possible alteration to the particles' surfaces and enables colour 3D visualisation of the particles. From twenty-one PM10 particles, the mean (standard deviation) major axis length was 5.6 (2.25) µm with corresponding values for the minor axis length of 3.8 (1.25) µm. These new findings may help explain why air pollution particulate matter (PM) has the ability to infiltrate human airway cells, potentially leading to respiratory tract, cardiovascular and neurological disease.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Humanos , Imageamento Tridimensional , Microscopia Confocal , Material Particulado/análise , Emissões de Veículos/análise
10.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34435037

RESUMO

Carbonaceous particles seen in frozen human macrophage-enriched placental cells can be used as a biomarker of personal exposure to combustion-derived particulate matter. The feasibility of using frozen tissues will allow for global comparative studies. https://bit.ly/3yANbRi.

11.
Sci Total Environ ; 751: 142235, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33181987

RESUMO

Inhaled particulate matter (PM) from combustion- and friction-sourced air pollution adversely affects organs distant from the lung. A putative mechanism for the remote effect of inhaled PM is that ultrafine, nano-sized fraction (<100 nm) translocates across the air-tissue barrier, directly interacting with phagocytic tissue cells. Although PM is reported in other tissues, whether it is phagocytosed by non-respiratory tissue resident cells is unclear. Using the placenta as an accessible organ for phagocytic cells, we sought to seek evidence for air pollution-derived PM in tissue resident phagocytes. Macrophage-enriched placental cells (MEPCs) were isolated, and examined by light and electron microscopy. MEPC carbon was assessed by image analysis (mean µm2/1000 cells); particle composition and numbers were investigated using magnetic analyses and energy dispersive X-ray spectroscopy. MEPCs phagocytic capacity was assessed by culture with diesel exhaust PM in vitro. Fifteen placentas were analysed. Black inclusions morphologically compatible with inhaled PM were identified within MEPCs from all samples (mean ± SEM carbon loading, 1000 MEPCs/participant of 0.004 ± 0.001 µm2). High resolution scanning/transmission electron microscopy revealed abundant nano-sized particle aggregates within MEPCs. MEPC PM was predominantly carbonaceous but also co-associated with a range of trace metals, indicative of high temperature (i.e. exogenous) generation. MEPCs contained readily-measurable amounts of iron-rich, ferrimagnetic particles, in concentrations/particle number concentrations ranging, respectively, from 8 to 50 ng/g and 10 to 60.107 magnetic particles/g (wet wt) MEPCs. Extracted MEPCs (n = 20/ placenta) were phagocytic for PM since all cells showed increased carbon area after culture with diesel PM in vitro (mean ± SEM increase 7.55 ± 1.26 µm2 carbon PM). These findings demonstrate that inhaled, metal-bearing, air pollution-derived PM can not only translocate to distant organs, but is taken up by tissue resident phagocytes in vivo. The human placenta, and hence probably the fetus, thus appears to be a target for such particles.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Nanopartículas , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Feminino , Humanos , Tamanho da Partícula , Material Particulado/análise , Gravidez , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
12.
PLoS One ; 15(5): e0232040, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32369498

RESUMO

Urban particulate matter (PM) enhances airway dendritic cell (DC) maturation in vitro. However, to date, there are no data on the association between exposure to urban PM and DC maturation in vivo. We sought to determine whether exposure of school-age children (8 to 14 y) to PM was associated with expression of CD86, a marker of maturation of airway conventional DCs (cDC). Healthy London school children underwent spirometry and sputum induction. Flow cytometry was used to identify CD86 and CCR7 expression on cDC subsets (CD1c+ cDC2 and CD141+ cDC1). Tertiles of mean annual exposure to PM ≤ 10 microns (PM10) at the school address were determined using the London Air Quality Toolkit model. Tertiles of exposure from the 409 children from 19 schools recruited were; lower (23.1 to 25.6 µg/m3, n = 138), middle (25.6 to 26.8 µg/m3, n = 126), and upper (26.8 to 31.0 µg/m3, n = 145). DC expression was assessed in 164/370 (44%) children who completed sputum induction. The proportion (%) of cDC expressing CD86 in the lower exposure tertile (n = 47) was lower compared with the upper exposure tertile (n = 49); (52% (44 to 70%) vs 66% (51 to 82%), p<0.05). There was a higher percentage of cDC1 cells in the lower tertile of exposure (6.63% (2.48 to 11.64) vs. 2.63% (0.72 to 7.18), p<0.05). Additionally; children in the lower exposure tertile had increased FEV1 compared with children in the upper tertile; (median z-score 0.15 (-0.59 to 0.75) vs. -0.21 (-0.86 to 0.48), p<0.05. Our data reveal that children attending schools in the highest areas of PM exposure in London exhibit increased numbers of "mature" airway cDCs, as evidenced by their expression of the surface marker CD86. This data is supportive of previous in vitro data demonstrating an alteration in the maturation of airway cDCs in response to exposure to pollutants.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Antígeno B7-2/metabolismo , Células Dendríticas/efeitos dos fármacos , Material Particulado/efeitos adversos , Adolescente , Criança , Células Dendríticas/imunologia , Exposição Ambiental , Feminino , Humanos , Londres , Masculino , Escarro/citologia , Saúde da População Urbana
13.
Sci Total Environ ; 635: 405-411, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677666

RESUMO

Exposure to particulate matter (PM) from burning of biomass for cooking is associated with adverse health effects. It is unknown whether or not cleaner burning biomass-fuelled cookstoves reduce the amount of PM inhaled by women compared with traditional open fires. We sought to assess whether airway macrophage black carbon (AMBC) - a marker of inhaled dose of carbonaceous PM from biomass and fossil fuel combustion - is lower in Malawian women using a cleaner burning biomass-fuelled cookstove compared with those using open fires for cooking. AMBC was assessed in induced sputum samples using image analysis and personal exposure to carbon monoxide (CO) and PM were measured using Aprovecho Indoor Air Pollution meters. A fossil-fuel exposed group of UK women was also studied. Induced sputum samples were obtained from 57 women from which AMBC was determined in 31. Median AMBC was 6.87µm2 (IQR 4.47-18.5) and 4.37µm2 (IQR 2.57-7.38) in the open fire (n=11) and cleaner burning cookstove groups (n=20), respectively (p=0.028). There was no difference in personal exposure to CO and PM between the two groups. UK women (n=5) had lower AMBC (median 0.89µm2, IQR 0.56-1.13) compared with both Malawi women using traditional cookstoves (p<0.001) and those using cleaner cookstoves (p=0.022). We conclude that use of a cleaner burning biomass-fuelled cookstove reduces inhaled PM dose in a way that is not necessarily reflected by personal exposure monitoring.


Assuntos
Culinária/instrumentação , Exposição por Inalação/estatística & dados numéricos , Fuligem/análise , Adulto , Biomassa , Monóxido de Carbono/análise , Culinária/métodos , Feminino , Incêndios , Humanos , Macrófagos , Malaui , Material Particulado/análise , Sistema Respiratório
14.
PLoS One ; 12(3): e0173569, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278175

RESUMO

Welders are more susceptible to pneumococcal pneumonia. The mechanisms are yet unclear. Pneumococci co-opt the platelet activating factor receptor (PAFR) to infect respiratory epithelial cells. We previously reported that exposure of respiratory cells to welding fumes (WF), upregulates PAFR-dependent pneumococcal infection. The signaling pathway for this response is unknown, however, in intestinal cells, hypoxia-inducible factor-1 α (HIF 1α) is reported to mediate PAFR-dependent infection. We sought to assess whether oxidative stress plays a role in susceptibility to pneumococcal infection via the platelet activating factor receptor. We also sought to evaluate the suitability of nasal epithelial PAFR expression in welders as a biomarker of susceptibility to infection. Finally, we investigated the generalisability of the effect of welding fumes on pneumococcal infection and growth using a variety of different welding fume samples. Nasal epithelial PAFR expression in welders and controls was analysed by flow cytometry. WF were collected using standard methodology. The effect of WF on respiratory cell reactive oxygen species production, HIF-1α expression, and pneumococcal infection was determined using flow cytometry, HIF-1α knockdown and overexpression, and pneumococcal infection assays. We found that nasal PAFR expression is significantly increased in welders compared with controls and that WF significantly increased reactive oxygen species production, HIF-1α and PAFR expression, and pneumococcal infection of respiratory cells. In unstimulated cells, HIF-1α knockdown decreased PAFR expression and HIF-1α overexpression increased PAFR expression. However, in knockdown cells pneumococcal infection was paradoxically increased and in overexpressing cells infection was unaffected. Nasal epithelial PAFR expression may be used as a biomarker of susceptibility to pneumococcal infection in order to target individuals, particularly those at high risk such as welders, for the pneumococcal vaccine. Expression of HIF-1α in unexposed respiratory cells inhibits basal pneumococcal infection via PAFR-independent mechanisms.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo , Infecções Pneumocócicas/etiologia , Mucosa Respiratória/microbiologia , Streptococcus pneumoniae/patogenicidade , Soldagem/métodos , Adolescente , Adulto , Estudos de Casos e Controles , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Glicoproteínas da Membrana de Plaquetas/metabolismo , Infecções Pneumocócicas/metabolismo , Infecções Pneumocócicas/patologia , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto Jovem
15.
J Immunotoxicol ; 10(2): 150-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22834942

RESUMO

Exposure to environmental agents can compromise numerous immunological functions. Immunotoxicology focuses on the evaluation of the potential adverse effects of xenobiotics on immune mechanisms that can lead to harmful changes in host responses such as: increased susceptibility to infectious diseases and tumorigenesis; the induction of hypersensitivity reactions; or an increased incidence of autoimmune disease. In order to assess the immunosuppressive response to short-term exposure to some commonly used pesticides, the studies here focused on the response of mice after exposures to the organochlorine pesticide methoxychlor, the organophosphorus pesticide parathion, or the agricultural insecticide synergist piperonyl butoxide. In these studies, 7-week-old mice were orally administered (by gavage) methoxychlor, parathion, or piperonyl butoxide daily for five consecutive days. On Day 2, all mice in each group were immunized with sheep red blood cells (SRBC), and their SRBC-specific IgM responses were subsequently assessed. In addition, levels of B-cells in the spleen of each mouse were also analyzed via surface antigen expression. The results of these studies indicated that treatments with these various pesticides induced marked decreases in the production of SRBC-specific IgM antibodies as well as in the expression of surface antigens in IgM- and germinal center-positive B-cells. Based on these outcomes, it is concluded that the short-term exposure protocol was able to detect potential immunosuppressive responses to methoxychlor, parathion, and piperonyl butoxide in situ, and, as a result, may be useful for detecting other environmental chemical-related immunotoxicities.


Assuntos
Linfócitos B/efeitos dos fármacos , Exposição Ambiental , Inseticidas/toxicidade , Metoxicloro/toxicidade , Paration/toxicidade , Butóxido de Piperonila/toxicidade , Animais , Formação de Anticorpos/efeitos dos fármacos , Linfócitos B/imunologia , Feminino , Técnica de Placa Hemolítica , Humanos , Imunoglobulina M/sangue , Células Jurkat , Camundongos , Camundongos Endogâmicos C3H , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA