Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurosci Res ; 191: 48-56, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36549387

RESUMO

The ventrolateral striatum (VLS), a subregion of the ventral striatum (VS), possesses distinct neuronal Ca2+ activities and functions in reward-oriented behavior, compared with the ventromedial striatum (VMS) based on the anatomical feature. We hypothesized that the VLS exhibits unique neuronal activity and function in nociceptive processing, a part of aversive processing. Using fiber photometry to monitor the neuronal Ca2+ activities, we demonstrated that acute noxious mechanical stimuli like tail-pinch increased the Ca2+ activity of dopamine D2 receptor-expressing medium spiny neurons (D2-MSNs) in the VLS in correlation with the stimulus intensities in mice, whereas mechanical stimuli increased the VMS D2-MSN activity independent of the stimulus intensities. Likewise, thermal stimuli decreased the VLS and VMS D2-MSN Ca2+ activities during nociceptive behaviors in the hot plate test. Furthermore, the VLS D2-MSNs increased their Ca2+ activity accompanied by formalin-induced nociceptive behaviors in mice, whereas the VMS D2-MSNs decreased it. The optogenetic inhibition of VLS D2-MSN activity increased the formalin-induced pain-related behavior in mice, thus suggesting the inhibitory effect of VLS D2-MSN activity on chemical nociceptive behavior, in contrast to previous reports that the VMS D2-MSNs could not involve the behavior. Therefore, the VLS D2-MSNs exhibited region-specific roles in nociception.


Assuntos
Nociceptividade , Estriado Ventral , Camundongos , Animais , Neurônios Espinhosos Médios , Receptores de Dopamina D2/metabolismo , Corpo Estriado/metabolismo , Neurônios/fisiologia , Receptores de Dopamina D1/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
2.
iScience ; 26(1): 105830, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36713262

RESUMO

The central serotonergic system has multiple roles in animal physiology and behavior, including sleep-wake control. However, its function in controlling brain energy metabolism according to the state of animals remains undetermined. Through in vivo monitoring of energy metabolites and signaling, we demonstrated that optogenetic activation of raphe serotonergic neurons increased cortical neuronal intracellular concentration of ATP, an indispensable cellular energy molecule, which was suppressed by inhibiting neuronal uptake of lactate derived from astrocytes. Raphe serotonergic neuronal activation induced cortical astrocytic Ca2+ and cAMP surges and increased extracellular lactate concentrations, suggesting the facilitation of lactate release from astrocytes. Furthermore, chemogenetic inhibition of raphe serotonergic neurons partly attenuated the increase in cortical neuronal intracellular ATP levels as arousal increased in mice. Serotonergic neuronal activation promoted an increase in cortical neuronal intracellular ATP levels, partly mediated by the facilitation of the astrocyte-neuron lactate shuttle, contributing to state-dependent optimization of neuronal intracellular energy levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA