RESUMO
Extrinsic signals received by a cell can induce remodeling of the cytoskeleton, but the downstream effects of cytoskeletal changes on gene expression have not been well studied. Here, we show that during telophase of an asymmetric division in C. elegans, extrinsic Wnt signaling modulates spindle structures through APR-1/APC, which in turn promotes asymmetrical nuclear localization of WRM-1/ß-catenin and POP-1/TCF. APR-1 that localized asymmetrically along the cortex established asymmetric distribution of astral microtubules, with more microtubules found on the anterior side. Perturbation of the Wnt signaling pathway altered this microtubule asymmetry and led to changes in nuclear WRM-1 asymmetry, gene expression, and cell-fate determination. Direct manipulation of spindle asymmetry by laser irradiation altered the asymmetric distribution of nuclear WRM-1. Moreover, laser manipulation of the spindles rescued defects in nuclear POP-1 asymmetry in wnt mutants. Our results reveal a mechanism in which the nuclear localization of proteins is regulated through the modulation of microtubules.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas do Citoesqueleto/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Caenorhabditis elegans/embriologia , Núcleo Celular/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Fuso Acromático , beta Catenina/metabolismoRESUMO
Motor circuits represent the main output of the central nervous system and produce dynamic behaviors ranging from relatively simple rhythmic activities like swimming in fish and breathing in mammals to highly sophisticated dexterous movements in humans. Despite decades of research, the development and function of motor circuits remain poorly understood. Breakthroughs in the field recently provided new tools and tractable model systems that set the stage to discover the molecular mechanisms and circuit logic underlying motor control. Here, we describe recent advances from both vertebrate (mouse, frog) and invertebrate (nematode, fruit fly) systems on cellular and molecular mechanisms that enable motor circuits to develop and function and highlight conserved and divergent mechanisms necessary for motor circuit development.
Assuntos
Neurônios Motores , Animais , Humanos , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/crescimento & desenvolvimentoRESUMO
A major challenge facing the genetics of autism spectrum disorders (ASDs) is the large and growing number of candidate risk genes and gene variants of unknown functional significance. Here, we used Caenorhabditis elegans to systematically functionally characterize ASD-associated genes in vivo. Using our custom machine vision system, we quantified 26 phenotypes spanning morphology, locomotion, tactile sensitivity, and habituation learning in 135 strains each carrying a mutation in an ortholog of an ASD-associated gene. We identified hundreds of genotype-phenotype relationships ranging from severe developmental delays and uncoordinated movement to subtle deficits in sensory and learning behaviors. We clustered genes by similarity in phenomic profiles and used epistasis analysis to discover parallel networks centered on CHD8â¢chd-7 and NLGN3â¢nlg-1 that underlie mechanosensory hyperresponsivity and impaired habituation learning. We then leveraged our data for in vivo functional assays to gauge missense variant effect. Expression of wild-type NLG-1 in nlg-1 mutant C. elegans rescued their sensory and learning impairments. Testing the rescuing ability of conserved ASD-associated neuroligin variants revealed varied partial loss of function despite proper subcellular localization. Finally, we used CRISPR-Cas9 auxin-inducible degradation to determine that phenotypic abnormalities caused by developmental loss of NLG-1 can be reversed by adult expression. This work charts the phenotypic landscape of ASD-associated genes, offers in vivo variant functional assays, and potential therapeutic targets for ASD.
Assuntos
Transtorno do Espectro Autista/genética , Moléculas de Adesão Celular Neuronais/genética , Habituação Psicofisiológica/genética , Fenômica/métodos , Animais , Animais Geneticamente Modificados , Transtorno do Espectro Autista/fisiopatologia , Técnicas de Observação do Comportamento/métodos , Comportamento Animal/fisiologia , Caenorhabditis elegans , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Epistasia Genética , Humanos , Imunoglobulinas/genética , Locomoção/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Fenótipo , Fatores de Transcrição/genéticaRESUMO
The adenomatous polyposis coli (APC) tumor suppressor has dual functions in Wnt/ß-catenin signaling and accurate chromosome segregation and is frequently mutated in colorectal cancers. Although APC contributes to proper cell division, the underlying mechanisms remain poorly understood. Here we show that Caenorhabditis elegans APR-1/APC is an attenuator of the pulling forces acting on the mitotic spindle. During asymmetric cell division of the C. elegans zygote, a LIN-5/NuMA protein complex localizes dynein to the cell cortex to generate pulling forces on astral microtubules that position the mitotic spindle. We found that APR-1 localizes to the anterior cell cortex in a Par-aPKC polarity-dependent manner and suppresses anterior centrosome movements. Our combined cell biological and mathematical analyses support the conclusion that cortical APR-1 reduces force generation by stabilizing microtubule plus-ends at the cell cortex. Furthermore, APR-1 functions in coordination with LIN-5 phosphorylation to attenuate spindle-pulling forces. Our results document a physical basis for the attenuation of spindle-pulling force, which may be generally used in asymmetric cell division and, when disrupted, potentially contributes to division defects in cancer.
Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Divisão Celular Assimétrica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Fuso Acromático , Animais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Centrossomo/metabolismo , Simulação por Computador , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microtúbulos/metabolismo , Modelos Teóricos , Mutação , Interferência de RNA , Estresse Mecânico , Tubulina (Proteína)/metabolismo , ZigotoRESUMO
Precise neuronal wiring is critical for the function of the nervous system and is ultimately determined at the level of individual synapses. Neurons integrate various intrinsic and extrinsic cues to form synapses onto their correct targets in a stereotyped manner. In the past decades, the nervous system of nematode (Caenorhabditis elegans) has provided the genetic platform to reveal the genetic and molecular mechanisms of synapse formation and specificity. In this review, we will summarize the recent discoveries in synapse formation and specificity in C. elegans.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios/metabolismo , Sinapses/fisiologia , Animais , Transdução de SinaisRESUMO
Wnt target gene activation in C. elegans requires simultaneous elevation of ß-catenin/SYS-1 and reduction of TCF/POP-1 nuclear levels within the same signal-responsive cell. SYS-1 binds to the conserved N-terminal ß-catenin-binding domain (CBD) of POP-1 and functions as a transcriptional co-activator. Phosphorylation of POP-1 by LIT-1, the C. elegans Nemo-like kinase homolog, promotes POP-1 nuclear export and is the main mechanism by which POP-1 nuclear levels are lowered. We present a mechanism whereby SYS-1 and POP-1 nuclear levels are regulated in opposite directions, despite the fact that the two proteins physically interact. We show that the C terminus of POP-1 is essential for LIT-1 phosphorylation and is specifically bound by the diverged ß-catenin WRM-1. WRM-1 does not bind to the CBD of POP-1, nor does SYS-1 bind to the C-terminal domain. Furthermore, binding of WRM-1 to the POP-1 C terminus is mutually inhibitory with SYS-1 binding at the CBD. Computer modeling provides a structural explanation for the specificity in WRM-1 and SYS-1 binding to POP-1. Finally, WRM-1 exhibits two independent and distinct molecular functions that are novel for ß-catenins: WRM-1 serves both as the substrate-binding subunit and an obligate regulatory subunit for the LIT-1 kinase. Mutual inhibitory binding would result in two populations of POP-1: one bound by WRM-1 that is LIT-1 phosphorylated and exported from the nucleus, and another, bound by SYS-1, that remains in the nucleus and transcriptionally activates Wnt target genes. These studies could provide novel insights into cancers arising from aberrant Wnt activation.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina/biossíntese , Sequência de Aminoácidos , Animais , Padronização Corporal , Caenorhabditis elegans , Núcleo Celular/metabolismo , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Homologia de Sequência de Aminoácidos , beta Catenina/químicaRESUMO
The auxin-inducible degron (AID) provides reversible, spatiotemporal control for the knockdown of target proteins. Here, we present a protocol for AID-mediated protein knockdown in Caenorhabditis elegans. We describe steps for generating the knock-in mutants using two CRISPR-Cas9 genome editing techniques and preparing the auxin-containing nematode growth media (NGM) plates. We also detail AID-mediated spatiotemporal protein knockdown. For complete details on the use and execution of this protocol, please refer to Kurashina et al. (2021).1.
Assuntos
Caenorhabditis elegans , Ácidos Indolacéticos , Animais , Caenorhabditis elegans/genética , Ácidos Indolacéticos/farmacologia , Sistemas CRISPR-Cas/genética , Edição de Genes/métodosRESUMO
The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Sinapses/genética , Proteínas de Caenorhabditis elegans/genética , Transdução de SinaisRESUMO
In C. elegans, Wnt signaling regulates a number of asymmetric cell divisions. During telophase, WRM-1/beta-catenin localizes asymmetrically to the anterior cortex and the posterior daughter's nucleus. However, cortical WRM-1's functions are not known. Here, we use a membrane-targeted form of WRM-1 to show that cortical WRM-1 inhibits Wnt signaling and the nuclear localization of WRM-1. These functions are mediated by APR-1/APC, which regulates WRM-1 nuclear export. We also show that APR-1 as well as PRY-1/Axin and Dishevelled homologs localize asymmetrically to the cortex. Our results suggest a model in which cortical WRM-1 recruits APR-1 to the anterior cortex before and during division, and the cortical APR-1 stimulates WRM-1 export from the anterior nucleus at telophase. Because beta-catenin and APC are localized to the cortex in many cell types in different species, our results suggest that these cortical proteins may regulate asymmetric divisions or Wnt signaling in other organisms as well.
Assuntos
Transporte Ativo do Núcleo Celular , Proteína da Polipose Adenomatosa do Colo/metabolismo , Caenorhabditis elegans/citologia , Divisão Celular , Núcleo Celular/metabolismo , Polaridade Celular , beta Catenina/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/metabolismo , Regulação para Baixo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mutação/genética , Proteínas Wnt/genéticaRESUMO
Precise synaptic connection of neurons with their targets is essential for the proper functioning of the nervous system. A plethora of signaling pathways act in concert to mediate the precise spatial arrangement of synaptic connections. Here we show a novel role for a gap junction protein in controlling tiled synaptic arrangement in the GABAergic motor neurons in Caenorhabditis elegans, in which their axons and synapses overlap minimally with their neighboring neurons within the same class. We found that while EGL-20/Wnt controls axonal tiling, their presynaptic tiling is mediated by a gap junction protein UNC-9/Innexin, that is localized at the presynaptic tiling border between neighboring dorsal D-type GABAergic motor neurons. Strikingly, the gap junction channel activity of UNC-9 is dispensable for its function in controlling tiled presynaptic patterning. While gap junctions are crucial for the proper functioning of the nervous system as channels, our finding uncovered the novel channel-independent role of UNC-9 in synapse patterning.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sinapses/metabolismo , Neurônios Motores/metabolismo , Conexinas/genética , Conexinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismoRESUMO
Wnt signaling plays important roles in cell polarization in diverse organisms, and loss of cell polarity is an early event in tumorigenesis caused by mutations in Wnt pathway genes. Despite this, the precise roles of Wnt proteins in cell polarization have remained elusive. In no organism has it been shown that the asymmetric position of a Wnt signal is essential to establishing a cell's polarity. Attempts to test this by ubiquitous expression of Wnt genes have suggested that Wnt signals might act only as permissive factors in cell polarization. Here we find, by using cell manipulations and ectopic gene expression in C. elegans, that the position from which Wnt signals are presented can determine the polarity of both embryonic and postembryonic cells. Furthermore, the position from which a Wnt signal is presented can determine the polarity of Frizzled receptor localization, suggesting that the polarizing effect of Wnt is likely to be direct. These results demonstrate that Wnt proteins can function as positional cues in establishing cell polarity.
Assuntos
Caenorhabditis elegans , Polaridade Celular , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Linhagem da Célula , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Morfogênese , Fuso Acromático/metabolismo , Proteínas Wnt/genéticaRESUMO
BACKGROUND: Alloplasmic wheat lines with Aegilops crassa cytoplasm often show homeotic conversion of stamens into pistils under long-day conditions. In the pistillody-exhibiting florets, an ectopic ovule is formed within the transformed stamens, and female sterility is also observed because of abnormal integument development. RESULTS: In this study, four wheat Bell1-like homeobox (BLH) genes were isolated and named WBLH1 to WBLH4. WBLH1/WBLH3/WBLH4 expression was observed in the basal boundary region of the ovary in both normal pistils and transformed stamens. WBLH2 was also strongly expressed in integuments not only of normal ovules in pistils but also of the ectopic ovules in transformed stamens, and the WBLH2 expression pattern in the sterile pistils seemed to be identical to that in normal ovules of fertile pistils. In addition, WBLH1 and WBLH3 showed interactions with the three wheat KNOX proteins through the BEL domain. WBLH2, however, formed a complex with wheat KNOTTED1 and ROUGH SHEATH1 orthologs through SKY and BEL domains, but not with a wheat LIGULELESS4 ortholog. CONCLUSIONS: Expression of the four WBLH genes is evident in reproductive organs including pistils and transformed stamens and is independent from female sterility in alloplasmic wheat lines with Ae. crassa cytoplasm. KNOX-BLH interaction was conserved among various plant species, indicating the significance of KNOX-BLH complex formation in wheat developmental processes. The functional features of WBLH2 are likely to be distinct from other BLH gene functions in wheat development.
Assuntos
Cruzamentos Genéticos , Citoplasma/genética , Flores/genética , Genes Homeobox/genética , Genes de Plantas/genética , Poaceae/genética , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Cromossomos de Plantas/genética , Clonagem Molecular , Flores/citologia , Dosagem de Genes/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fotoperíodo , Infertilidade das Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Deleção de Sequência , Técnicas do Sistema de Duplo-HíbridoRESUMO
Neuronal cell fate determinants establish the identities of neurons by controlling gene expression to regulate neuronal morphology and synaptic connectivity. However, it is not understood if neuronal cell fate determinants have postmitotic functions in synapse pattern formation. Here we identify a novel role for UNC-4 homeobox protein and its corepressor UNC-37/Groucho, in tiled synaptic patterning of the cholinergic motor neurons in Caenorhabditis elegans. We show that unc-4 is not required during neurogenesis but is required in the postmitotic neurons for proper synapse patterning. In contrast, unc-37 is required in both developing and postmitotic neurons. The synaptic tiling defects of unc-4 mutants are suppressed by bar-1/ß-catenin mutation, which positively regulates the expression of ceh-12/HB9. Ectopic ceh-12 expression partly underlies the synaptic tiling defects of unc-4 and unc-37 mutants. Our results reveal a novel postmitotic role of neuronal cell fate determinants in synapse pattern formation through inhibiting the canonical Wnt signaling pathway.
Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Expressão Gênica , Genes Homeobox , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Correpressoras/genética , Proteínas de Homeodomínio/metabolismo , Mitose , Neurônios/fisiologia , Sinapses/fisiologia , Fatores de Transcrição/metabolismoRESUMO
Homeotic transformation of stamens into pistil-like structures, called pistillody, has been reported in some alloplasmic common wheat lines with Aegilops crassa cytoplasm. An alloplasmic line of Chinese Spring ditelosomic 7BS (CSdt7BS) with Ae. crassa cytoplasm lacking the long arm of the chromosome 7B shows pistillody, and the pistils and transformed stamens are sterile due to abnormal ovule development. To elucidate the molecular mechanism of the ovule abnormality, we compared the expression profiles of floral organs between euplasmic and alloplasmic CSdt7BS lines. Two differential display methods of mRNA profiling demonstrated that Ae. crassa cytoplasm largely affects nuclear gene expression profiles of common wheat. Of the differentially expressed genes, a wheat AINTEGUMENTA (ANT) homolog, WANT-1, was preferentially expressed in pistils but not in stamens, and accumulation of the transcript was limited to ovule primordia at the floral organ development stage. In alloplasmic wheat, WANT-1 expression was patchy and weak at the ovule-development stages. On the other hand, no significant difference in gene expression patterns of wheat AGAMOUS (AG) homologs (WAG-1 and WAG-2) was observed between fertile and sterile pistils. These results indicated that alteration of gene expression after initiation of ovule primordia results in abnormal ovule development, and that the aberrant ovule formation is at least partly associated with the weak expression of WANT-1 around ovule primordia in alloplasmic wheat with Ae. crassa cytoplasm.
Assuntos
Citoplasma/genética , Regulação da Expressão Gênica de Plantas , Poaceae/citologia , Triticum/anatomia & histologia , Triticum/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Núcleo Celular/genética , Flores/anatomia & histologia , Poaceae/anatomia & histologia , Poaceae/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Triticum/citologia , Triticum/embriologiaRESUMO
During development, the nervous system undergoes a refinement process by which neurons initially extend an excess number of neurites, the majority of which will be eliminated by the mechanism called neurite pruning. Some neurites undergo stereotyped and developmentally regulated pruning. However, the signaling cues that instruct stereotyped neurite pruning are yet to be fully elucidated. Here we show that Wnt morphogen instructs stereotyped neurite pruning for proper neurite projection patterning of the cholinergic motor neuron called PDB in C. elegans. In lin-44/wnt and lin-17/frizzled mutant animals, the PDB neurites often failed to prune and grew towards the lin-44-expressing cells. Surprisingly, membrane-tethered lin-44 is sufficient to induce proper neurite pruning in PDB, suggesting that neurite pruning does not require a Wnt gradient. LIN-17 and DSH-1/Dishevelled proteins were recruited to the pruning neurites in lin-44-dependent manners. Our results revealed the novel gradient-independent role of Wnt signaling in instructing neurite pruning.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Proteínas Desgrenhadas/metabolismo , Glicoproteínas/metabolismo , Sistema Nervoso/embriologia , Plasticidade Neuronal , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt , Animais , Regulação da Expressão Gênica no Desenvolvimento , Mapas de Interação de ProteínasRESUMO
Our ability to sequence genomes has vastly surpassed our ability to interpret the genetic variation we discover. This presents a major challenge in the clinical setting, where the recent application of whole-exome and whole-genome sequencing has uncovered thousands of genetic variants of uncertain significance. Here, we present a strategy for targeted human gene replacement and phenomic characterization, based on CRISPR-Cas9 genome engineering in the genetic model organism Caenorhabditis elegans, that will facilitate assessment of the functional conservation of human genes and structure-function analysis of disease-associated variants with unprecedented precision. We validate our strategy by demonstrating that direct single-copy replacement of the C. elegans ortholog (daf-18) with the critical human disease-associated gene phosphatase and tensin homolog (PTEN) is sufficient to rescue multiple phenotypic abnormalities caused by complete deletion of daf-18, including complex chemosensory and mechanosensory impairments. In addition, we used our strategy to generate animals harboring a single copy of the known pathogenic lipid phosphatase inactive PTEN variant (PTEN-G129E), and showed that our automated in vivo phenotypic assays could accurately and efficiently classify this missense variant as loss of function. The integrated nature of the human transgenes allows for analysis of both homozygous and heterozygous variants and greatly facilitates high-throughput precision medicine drug screens. By combining genome engineering with rapid and automated phenotypic characterization, our strategy streamlines the identification of novel conserved gene functions in complex sensory and learning phenotypes that can be used as in vivo functional assays to decipher variants of uncertain significance.
Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/genética , Sequência Conservada , Marcação de Genes , Variação Genética , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Quimiotaxia/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Deleção de Genes , Dosagem de Genes , Edição de Genes , Genes de Helmintos , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Fenótipo , Cloreto de Sódio/farmacologiaRESUMO
During development, neurons form synapses with their fate-determined targets. While we begin to elucidate the mechanisms by which extracellular ligand-receptor interactions enhance synapse specificity by inhibiting synaptogenesis, our knowledge about their intracellular mechanisms remains limited. Here we show that Rap2 GTPase (rap-2) and its effector, TNIK (mig-15), act genetically downstream of Plexin (plx-1) to restrict presynaptic assembly and to form tiled synaptic innervation in C. elegans. Both constitutively GTP- and GDP-forms of rap-2 mutants exhibit synaptic tiling defects as plx-1 mutants, suggesting that cycling of the RAP-2 nucleotide state is critical for synapse inhibition. Consistently, PLX-1 suppresses local RAP-2 activity. Excessive ectopic synapse formation in mig-15 mutants causes a severe synaptic tiling defect. Conversely, overexpression of mig-15 strongly inhibited synapse formation, suggesting that mig-15 is a negative regulator of synapse formation. These results reveal that subcellular regulation of small GTPase activity by Plexin shapes proper synapse patterning in vivo.
Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas do Tecido Nervoso/química , Proteínas Serina-Treonina Quinases/química , Receptores de Superfície Celular/química , Proteínas rap de Ligação ao GTP/química , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Guanosina Difosfato/química , Guanosina Trifosfato/química , Mutação , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Neurônios/química , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais/genética , Sinapses/química , Sinapses/genética , Sinapses/patologia , Proteínas rap de Ligação ao GTP/genéticaRESUMO
A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice.
Assuntos
Caenorhabditis elegans/embriologia , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/fisiologia , Animais , Variação Biológica da População , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Fatores de Transcrição/metabolismoRESUMO
The accumulation of protein aggregates is a common pathological hallmark of many neurodegenerative diseases. However, we do not fully understand how aggregates are formed or the complex network of chaperones, proteasomes and other regulatory factors involved in their clearance. Here, we report a chemically controllable fluorescent protein that enables us to rapidly produce small aggregates inside living cells on the order of seconds, as well as monitor the movement and coalescence of individual aggregates into larger structures. This method can be applied to diverse experimental systems, including live animals, and may prove valuable for understanding cellular responses and diseases associated with protein aggregates.
Assuntos
Proteínas de Fluorescência Verde/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas , Proteína 1A de Ligação a Tacrolimo/metabolismo , Animais , Sítios de Ligação/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Células NIH 3T3 , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/genética , Imagem com Lapso de Tempo/métodosRESUMO
Interaction between nucleus and cytoplasm has essential roles in plant development, including that of floral organs. We isolated a wheat homolog Whlp of Arabidopsis HUELLENLOS PARALOG (HLP) gene encoding a mitochondrial (mt) ribosomal protein L14. Transient expression analysis using the green fluorescent protein (GFP) fusion protein showed that 50 amino residues located on the N-terminal of the wheat HLP homolog (WHLP) protein acted as a mt-targeting signal (MTS). Expression patterns of the Whlp gene were compared among floral organs of alloplasmic lines of wheat, in which intrinsic cytoplasms were replaced by the cytoplasm of a wild relative Aegilops crassa. In these alloplasmic lines, pistillody (homeotic transformation of stamens into pistil-like organs) is induced by the alien cytoplasm in the absence of nuclear restorer genes. The Whlp transcripts preferentially accumulated in stamens compared with pistils, leaves, and roots. The expression level of Whlp in the pistillate stamens of the alloplasmic lines was similar to that in genuine pistils of both euplasmic lines and fertile alloplasmic lines. The result suggested that the elevated expression of the Whlp gene plays a role in aiding the development of male reproductive organ but not in the determination of its whorl identity. A comparable expression pattern was observed in another nuclear-encoded mt ribosomal protein gene but not in a mt-encoded gene. The different expression patterns of different mt ribosomal protein genes suggest that the abundance of mt ribosomal proteins is differentially regulated in the organ/tissue development in wheat.