Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 291: 120596, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554783

RESUMO

BACKGROUND: Left prefrontal intermittent theta-burst stimulation (iTBS) has emerged as a safe and effective transcranial magnetic stimulation (TMS) treatment protocol in depression. Though network effects after iTBS have been widely studied, the deeper mechanistic understanding of target engagement is still at its beginning. Here, we investigate the feasibility of a novel integrated TMS-fMRI setup and accelerated echo planar imaging protocol to directly observe the immediate effects of full iTBS treatment sessions. OBJECTIVE/HYPOTHESIS: In our effort to explore interleaved iTBS-fMRI feasibility, we hypothesize that TMS will induce acute BOLD signal changes in both the stimulated area and interconnected neural regions. METHODS: Concurrent TMS-fMRI with full sessions of neuronavigated iTBS (i.e. 600 pulses) of the left dorsolateral prefrontal cortex (DLPFC) was investigated in 18 healthy participants. In addition, we conducted four TMS-fMRI sessions in a single patient on long-term maintenance iTBS for bipolar depression to test the transfer to clinical cases. RESULTS: Concurrent TMS-fMRI was feasible for iTBS sequences with 600 pulses. During interleaved iTBS-fMRI, an increase of the BOLD signal was observed in a network including bilateral DLPFC regions. In the clinical case, a reduced BOLD response was found in the left DLPFC and the subgenual anterior cingulate cortex, with high variability across individual sessions. CONCLUSIONS: Full iTBS sessions as applied for the treatment of depressive disorders can be established in the interleaved iTBS-fMRI paradigm. In the future, this experimental approach could be valuable in clinical samples, for demonstrating target engagement by iTBS protocols and investigating their mechanisms of therapeutic action.


Assuntos
Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Giro do Cíngulo , Córtex Pré-Frontal Dorsolateral
2.
Psychiatry Res Neuroimaging ; 342: 111844, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38901089

RESUMO

This study investigates computational models of electric field strength for transcranial magnetic stimulation (TMS) of the left dorsolateral prefrontal cortex (DLPFC) based on individual MRI data of patients with schizophrenia (SZ), major depressive disorder (MDD), bipolar disorder (BP), and healthy controls (HC). In addition, it explores the association of electric field intensities with age, gender and intracranial volume. The subjects were 23 SZ (12 male, mean age = 45.30), 24 MDD (16 male, mean age = 43.57), 23 BP (16 male, mean age = 39.29), 23 HC (13 male, mean age = 40.91). Based on individual MRI sequences, electric fields were computationally modeled by two independent investigators using SimNIBS ver. 2.1.1. There was no significant difference in electric field strength between the groups (HC vs SZ, HC vs MDD, HC vs BP, SCZ vs MDD, SCZ vs BP, MDD vs BP). Female subjects showed higher electric field intensities in widespread areas than males, and age was positively significantly associated with electric field strength in the left parahippocampal area as observed. Our results suggest differences in electric field strength of left DLPFC TMS for gender and age. It may open future avenues for individually modeling TMS based on structural MRI data.

3.
Front Psychiatry ; 13: 825205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530029

RESUMO

Transcranial magnetic stimulation (TMS) is a promising treatment modality for psychiatric and neurological disorders. Repetitive TMS (rTMS) is widely used for the treatment of psychiatric and neurological diseases, such as depression, motor stroke, and neuropathic pain. However, the underlying mechanisms of rTMS-mediated neuronal modulation are not fully understood. In this respect, concurrent or simultaneous TMS-fMRI, in which TMS is applied during functional magnetic resonance imaging (fMRI), is a viable tool to gain insights, as it enables an investigation of the immediate effects of TMS. Concurrent application of TMS during neuroimaging usually causes severe artifacts due to magnetic field inhomogeneities induced by TMS. However, by carefully interleaving the TMS pulses with MR signal acquisition in the way that these are far enough apart, we can avoid any image distortions. While the very first feasibility studies date back to the 1990s, recent developments in coil hardware and acquisition techniques have boosted the number of TMS-fMRI applications. As such, a concurrent application requires expertise in both TMS and MRI mechanisms and sequencing, and the hurdle of initial technical set up and maintenance remains high. This review gives a comprehensive overview of concurrent TMS-fMRI techniques by collecting (1) basic information, (2) technical challenges and developments, (3) an overview of findings reported so far using concurrent TMS-fMRI, and (4) current limitations and our suggestions for improvement. By sharing this review, we hope to attract the interest of researchers from various backgrounds and create an educational knowledge base.

4.
Psychiatry Res Neuroimaging ; 326: 111547, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36240572

RESUMO

This cross-diagnostic study aims to computationally model electric field (efield) for prefrontal transcranial direct current stimulation in mood disorders and schizophrenia. Enrolled were patients with major depressive disorder (n = 23), bipolar disorder (n = 24), schizophrenia (n = 23), and healthy controls (n = 23). The efield was simulated using SimNIBS software (ver.2.1.1). Electrodes were placed at the left and right prefrontal areas and the current intensity was set to 2 mA intensity. Schizophrenia and major depressive disorder groups showed significantly lower 99.5th percentile efield strength than healthy controls. In voxel-wise analysis, patients with schizophrenia showed a significant reduction of simulated efield strength in the bilateral frontal lobe, cerebellum and brain stem compared with healthy controls. Among the patients with schizophrenia, reduction of simulated efield strength was not significantly correlated with psychiatric symptoms or global functioning. The patients with bipolar disorder showed no significant difference in simulated efield strength compared with healthy controls, and there was no significant difference between the clinical groups. Our results suggest attenuated electrophysiological response to transcranial direct current stimulation to the prefrontal cortex in patients with schizophrenia, and to some extent in patients with major depressive disorder.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Estimulação Transcraniana por Corrente Contínua , Simulação por Computador , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/psicologia , Transtorno Depressivo Maior/terapia , Humanos , Transtornos do Humor/diagnóstico por imagem , Transtornos do Humor/terapia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/terapia , Estimulação Transcraniana por Corrente Contínua/métodos
5.
Neuroimage Clin ; 34: 103011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35487132

RESUMO

INTRODUCTION: Prefrontal cortex (PFC) regions are promising targets for therapeutic applications of non-invasive brain stimulation, e.g. transcranial direct current stimulation (tDCS), which has been proposed as a novel intervention for major depressive disorder (MDD) and negative symptoms of schizophrenia (SCZ). However, the effects of tDCS vary inter-individually, and dose-response relationships have not been established. Stimulation parameters are often tested in healthy subjects and transferred to clinical populations. The current study investigates the variability of individual MRI-based electric fields (e-fields) of standard bifrontal tDCS across individual subjects and diagnoses. METHOD: The study included 74 subjects, i.e. 25 patients with MDD, 24 patients with SCZ, and 25 healthy controls (HC). Individual e-fields of a common tDCS protocol (i.e. 2 mA stimulation intensity, bifrontal anode-F3/cathode-F4 montage) were modeled by two investigators using SimNIBS (2.0.1) based on structural MRI scans. RESULT: On a whole-brain level, the average e-field strength was significantly reduced in MDD and SCZ compared to HC, but MDD and SCZ did not differ significantly. Regions of interest (ROI) analysis for PFC subregions showed reduced e-fields in Sallet areas 8B and 9 for MDD and SCZ compared to HC, whereas there was again no difference between MDD and SCZ. Within groups, we generally observed high inter-individual variability of e-field intensities at a higher percentile of voxels. CONCLUSION: MRI-based e-field modeling revealed significant differences in e-field strengths between clinical and non-clinical populations in addition to a general inter-individual variability. These findings support the notion that dose-response relationships for tDCS cannot be simply transferred from healthy to clinical cohorts and need to be individually established for clinical groups. In this respect, MRI-based e-field modeling may serve as a proxy for individualized dosing.


Assuntos
Transtorno Depressivo Maior , Estimulação Transcraniana por Corrente Contínua , Encéfalo , Transtorno Depressivo Maior/terapia , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos
6.
Exp Neurol ; 341: 113713, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33798562

RESUMO

Current hypotheses on the therapeutic action of non-invasive brain stimulation (NIBS) in psychiatric disorders build on the abundant data from neuroimaging studies. This makes NIBS a very promising tool for developing personalized interventions within a precision medicine framework. NIBS methods fundamentally vary in their neurophysiological properties. They comprise repetitive transcranial magnetic stimulation (rTMS) and its variants (e.g. theta burst stimulation - TBS) as well as different types of transcranial electrical stimulation (tES), with the largest body of evidence for transcranial direct current stimulation (tDCS). In the last two decades, significant conceptual progress has been made in terms of NIBS targets, i.e. from single brain regions to neural circuits and to functional connectivity as well as their states, recently leading to brain state modulating closed-loop approaches. Regarding structural and functional brain anatomy, NIBS meets an individually unique constellation, which varies across normal and pathophysiological states. Thus, individual constitutions and signatures of disorders may be indistinguishable at a given time point, but can theoretically be parsed along course- and treatment-related trajectories. We address precision interventions on three levels: 1) the NIBS intervention, 2) the constitutional factors of a single patient, and 3) the phenotypes and pathophysiology of illness. With examples from research on depressive disorders, we propose solutions and discuss future perspectives, e.g. individual MRI-based electrical field strength as a proxy for NIBS dosage, and also symptoms, their clusters, or biotypes instead of disorder focused NIBS. In conclusion, we propose interleaved research on these three levels along a general track of reverse and forward translation including both clinically directed research in preclinical model systems, and biomarker guided controlled clinical trials. Besides driving the development of safe and efficacious interventions, this framework could also deepen our understanding of psychiatric disorders at their neurophysiological underpinnings.


Assuntos
Encéfalo/fisiologia , Transtornos Mentais/diagnóstico , Transtornos Mentais/terapia , Medicina de Precisão/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Humanos , Transtornos Mentais/psicologia , Medicina de Precisão/tendências , Técnicas Estereotáxicas/tendências , Estimulação Transcraniana por Corrente Contínua/tendências , Estimulação Magnética Transcraniana/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA