Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924651

RESUMO

INTRODUCTION: The established cerebrospinal fluid (CSF) phosphorylated tau181 (p-tau181) may not reliably reflect concomitant Alzheimer's disease (AD) and primary age-related tauopathy (PART) found in Creutzfeldt-Jakob disease (CJD) at autopsy. METHODS: We investigated CSF N-terminal p-tau181, p-tau217, and p-tau231 with in-house Simoa assays in definite CJD (n = 29), AD dementia (n = 75), mild cognitive impairment (MCI) due to AD (n = 65), and subjective cognitive decline (SCD, n = 28). Post-mortem examination performed in patients with CJD 1.3 (0.3-14.3) months after CSF collection revealed no co-pathology in 10, concomitant AD in 8, PART in 8, and other co-pathologies in 3 patients. RESULTS: N-terminal p-tau was increased in CJD versus SCD (p < 0.0001) and correlated with total tau (t-tau) in the presence of AD and PART co-pathology (rho = 0.758-0.952, p ≤ 001). Concentrations in CJD+AD were indistinguishable from AD dementia, with the largest fold-change in p-tau217 (11.6), followed by p-tau231 and p-tau181 (3.2-4.5). DISCUSSION: Variable fold-changes and correlation with t-tau suggest that p-tau closely associates with neurodegeneration and concomitant AD in CJD. HIGHLIGHTS: N-terminal phosphorylated tau (p-tau) biomarkers are increased in Creutzfeldt-Jakob disease (CJD) with and without concomitant AD. P-tau217, p-tau231, and p-tau181 correlate with total tau (t-tau) and increase in the presence of amyloid beta (Aß) co-pathology. N-terminal p-tau181 and p-tau231 in Aß-negative CJD show variation among PRNP genotypes. Compared to mid-region-targeting p-tau181, cerebrospinal fluid (CSF) N-terminal p-tau has greater potential to reflect post-mortem neuropathology in the CJD brain.

2.
Eur J Neurol ; 30(4): 1035-1047, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36583625

RESUMO

BACKGROUND AND PURPOSE: Although sporadic Creutzfeldt-Jakob disease (sCJD) is a rare cause of dementia, it is critical to understand its functional networks as the prion protein spread throughout the brain may share similar mechanisms with other more common neurodegenerative disorders. In this study, the metabolic brain network associated with sCJD was investigated and its internal network organization was explored. METHODS: We explored 2-[18 F]fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) brain scans of 29 sCJD patients, 56 normal controls (NCs) and 46 other dementia patients from two independent centers. sCJD-related pattern (CJDRP) was identified in a cohort of 16 pathologically proven sCJD patients and 16 age-matched NCs using scaled subprofile modeling/principal component analysis and was prospectively validated in an independent cohort of 13 sCJD patients and 20 NCs. The pattern's specificity was tested on other dementia patients and its clinical relevance by clinical correlations. The pattern's internal organization was further studied using graph theory methods. RESULTS: The CJDRP was characterized by relative hypometabolism in the bilateral caudate, thalami, middle and superior frontal gyri, parietal lobe and posterior cingulum in association with relative hypermetabolism in the hippocampi, parahippocampal gyri and cerebellum. The pattern's expression significantly discriminated sCJD from NCs and other dementia patients (p < 0.005; receiver operating characteristic analysis CJD vs. NCs area under the curve [AUC] 0.90-0.96, sCJD vs. Alzheimer's disease AUC 0.78, sCJD vs. behavioral variant of frontotemporal dementia AUC 0.84). The pattern's expression significantly correlated with cognitive, functional decline and disease duration. The metabolic connectivity analysis revealed inefficient information transfer with specific network reorganization. CONCLUSIONS: The CJDRP is a robust metabolic biomarker of sCJD. Due to its excellent clinical correlations it has the potential to monitor disease in emerging disease-modifying trials.


Assuntos
Síndrome de Creutzfeldt-Jakob , Humanos , Síndrome de Creutzfeldt-Jakob/patologia , Encéfalo/patologia , Tomografia por Emissão de Pósitrons , Cerebelo/metabolismo
3.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685887

RESUMO

The co-occurrence of multiple proteinopathies is being increasingly recognized in neurodegenerative disorders and poses a challenge in differential diagnosis and patient selection for clinical trials. Changes in brain metabolism captured by positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) allow us to differentiate between different neurodegenerative disorders either by visual exploration or by studying disease-specific metabolic networks in individual patients. However, the impact of multiple proteinopathies on brain metabolism and metabolic networks remains unknown due to the absence of pathological studies. In this case study, we present a 67-year-old patient with rapidly progressing dementia clinically diagnosed with probable sporadic Creutzfeldt-Jakob disease (sCJD). However, in addition to the expected pronounced cortical and subcortical hypometabolism characteristic of sCJD, the brain FDG PET revealed an intriguing finding of unexpected relative hypermetabolism in the bilateral putamina, raising suspicions of coexisting Parkinson's disease (PD). Additional investigation of disease-specific metabolic brain networks revealed elevated expression of both CJD-related pattern (CJDRP) and PD-related pattern (PDRP) networks. The patient eventually developed akinetic mutism and passed away seven weeks after symptom onset. Neuropathological examination confirmed neuropathological changes consistent with sCJD and the presence of Lewy bodies confirming PD pathology. Additionally, hyperphosphorylated tau and TDP-43 pathology were observed, a combination of four proteinopathies that had not been previously reported. Overall, this case provides valuable insights into the complex interplay of neurodegenerative pathologies and their impact on metabolic brain changes, emphasizing the role of metabolic brain imaging in evaluating potential presence of multiple proteinopathies.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Idoso , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Fluordesoxiglucose F18 , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
4.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163706

RESUMO

Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and C-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Catepsina Z/metabolismo , Glioblastoma/metabolismo , Fosfopiruvato Hidratase/metabolismo , Microambiente Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Catepsina Z/antagonistas & inibidores , Catepsina Z/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Regulação para Cima
5.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187334

RESUMO

Glioblastoma (GBM), the most common primary brain tumor, is a complex and extremely aggressive disease. Despite recent advances in molecular biology, there is a lack of biomarkers, which would improve GBM's diagnosis, prognosis, and therapy. Here, we analyzed by qPCR the expression levels of a set of miRNAs in GBM and lower-grade glioma human tissue samples and performed a survival analysis in silico. We then determined the expression of same miRNAs and their selected target mRNAs in small extracellular vesicles (sEVs) of GBM cell lines. We showed that the expression of miR-21-5p was significantly increased in GBM tissue compared to lower-grade glioma and reference brain tissue, while miR-124-3p and miR-138-5p were overexpressed in reference brain tissue compared to GBM. We also demonstrated that miR-9-5p and miR-124-3p were overexpressed in the sEVs of GBM stem cell lines (NCH421k or NCH644, respectively) compared to the sEVs of all other GBM cell lines and astrocytes. VIM mRNA, a target of miR-124-3p and miR-138-5p, was overexpressed in the sEVs of U251 and U87 GBM cell lines compared to the sEVs of GBM stem cell line and also astrocytes. Our results suggest VIM mRNA, miR-9-5p miRNA, and miR-124-3p miRNA could serve as biomarkers of the sEVs of GBM cells.


Assuntos
Neoplasias Encefálicas/genética , Vesículas Extracelulares/genética , Glioblastoma/genética , MicroRNAs/genética , Astrócitos/patologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/patologia , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Humanos , Prognóstico , RNA Mensageiro/genética
6.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545571

RESUMO

The chemokine CCL5/RANTES is a versatile inflammatory mediator, which interacts with the receptor CCR5, promoting cancer cell interactions within the tumor microenvironment. Glioblastoma is a highly invasive tumor, in which CCL5 expression correlates with shorter patient survival. Using immunohistochemistry, we identified CCL5 and CCR5 in a series of glioblastoma samples and cells, including glioblastoma stem cells. CCL5 and CCR5 gene expression were significantly higher in a cohort of 38 glioblastoma samples, compared to low-grade glioma and non-cancerous tissues. The in vitro invasion of patients-derived primary glioblastoma cells and glioblastoma stem cells was dependent on CCL5-induced CCR5 signaling and is strongly inhibited by the small molecule CCR5 antagonist maraviroc. Invasion of these cells, which was enhanced when co-cultured with mesenchymal stem cells (MSCs), was inhibited by maraviroc, suggesting that MSCs release CCR5 ligands. In support of this model, we detected CCL5 and CCR5 in MSC monocultures and glioblastoma-associated MSC in tissue sections. We also found CCR5 expressing macrophages were in close proximity to glioblastoma cells. In conclusion, autocrine and paracrine cross-talk in glioblastoma and, in particular, glioblastoma stem cells with its stromal microenvironment, involves CCR5 and CCL5, contributing to glioblastoma invasion, suggesting the CCL5/CCR5 axis as a potential therapeutic target that can be targeted with repositioned drug maraviroc.


Assuntos
Neoplasias Encefálicas/patologia , Quimiocina CCL5/metabolismo , Glioblastoma/patologia , Receptores CCR5/metabolismo , Regulação para Cima , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Maraviroc/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Gradação de Tumores , Invasividade Neoplásica , Receptores CCR5/genética , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral , Regulação para Cima/efeitos dos fármacos
7.
N Engl J Med ; 374(10): 951-8, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26862926

RESUMO

A widespread epidemic of Zika virus (ZIKV) infection was reported in 2015 in South and Central America and the Caribbean. A major concern associated with this infection is the apparent increased incidence of microcephaly in fetuses born to mothers infected with ZIKV. In this report, we describe the case of an expectant mother who had a febrile illness with rash at the end of the first trimester of pregnancy while she was living in Brazil. Ultrasonography performed at 29 weeks of gestation revealed microcephaly with calcifications in the fetal brain and placenta. After the mother requested termination of the pregnancy, a fetal autopsy was performed. Micrencephaly (an abnormally small brain) was observed, with almost complete agyria, hydrocephalus, and multifocal dystrophic calcifications in the cortex and subcortical white matter, with associated cortical displacement and mild focal inflammation. ZIKV was found in the fetal brain tissue on reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay, with consistent findings on electron microscopy. The complete genome of ZIKV was recovered from the fetal brain.


Assuntos
Encéfalo/patologia , Doenças Fetais/patologia , Microcefalia/virologia , Infecção por Zika virus/patologia , Zika virus/genética , Aborto Terapêutico , Adulto , Encéfalo/embriologia , Encéfalo/virologia , Feminino , Doenças Fetais/diagnóstico por imagem , Doenças Fetais/virologia , Genoma Viral , Humanos , Transmissão Vertical de Doenças Infecciosas , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Filogenia , Gravidez , Terceiro Trimestre da Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ultrassonografia Pré-Natal , Zika virus/isolamento & purificação , Infecção por Zika virus/complicações , Infecção por Zika virus/transmissão
8.
Neuropathology ; 36(1): 88-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26198847

RESUMO

Primary angiitis of the central nervous system is a rare condition, usually with an insidious onset. There is a wide variety of histological types (granulomatous, lymphocytic or necrotizing vasculitis) and types of vessel involved (arteries, veins or both). Most cases are idiopathic. We describe a first case of idiopathic granulomatous central nervous system phlebitis with additional limited involvement of the heart and lung, exclusively affecting small and medium sized veins in a 22-year-old woman, presenting as a sub acute headache. The reasons for this peculiar limitation of inflammation to the veins and the involvement of the heart and lungs are unknown.


Assuntos
Doenças do Sistema Nervoso Central/patologia , Granuloma/patologia , Pulmão/patologia , Miocárdio/patologia , Flebite/patologia , Autopsia , Edema Encefálico/etiologia , Edema Encefálico/patologia , Veias Cerebrais/patologia , Evolução Fatal , Feminino , Granuloma/complicações , Cefaleia/etiologia , Humanos , Flebite/etiologia , Vasculite do Sistema Nervoso Central/complicações , Vasculite do Sistema Nervoso Central/patologia , Adulto Jovem
10.
Clin Neuropathol ; 33(5): 354-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25034703

RESUMO

AIMS: Despite the important prognostic value of brain invasion in meningiomas, little attention has been paid to its massessment, and the parameters associated with brain invasion assessability (identification of brain tissue in the surgical specimen) are not well characterized. The aim of our study was to determine the parameters that are associated with brain invasion assessability and brain invasion in meningiomas. MATERIAL AND METHODS: By binary logistic regression analysis, we studied the association of various clinical and pathologic parameters with brain invasion assessabilitym and brain invasion in 294 meningiomas: 149 unselected consecutive meningiomas with extensive sampling, diagnosed in 2009 and 2010, collected prospectively, and 145 meningiomas diagnosed in 1999 and 2000 when little attention was paid to brain invasion assessment. RESULTS: Meningioma grade, size and number of tissue blocks were independent predictors of brain invasion assessability. Brain tissue was identified in 78 of 233 (33%) benign, 33 of 51 (65%) atypical, and 10 of 10 (100%) malignant meningiomas. In univariate analysis, group (prospective vs.retrospective), type (recurrent vs. primary), cleavability, meningioma grade and mitotic count were predictors of brain invasion, while only meningioma grade, and group retained predictive value in multivariate analysis. Brain invasion, when assessable, was identified in 22 of 78 (28%) benign, 21 of 33 (64%) atypical, and 10 of 10 (100%) malignant meningiomas. CONCLUSIONS: Brain invasion assessability is related to meningioma grade and size and can be improved by extensive sampling of meningioma surgical.


Assuntos
Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Meningioma/patologia , Meningioma/cirurgia , Recidiva Local de Neoplasia/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica , Valor Preditivo dos Testes , Prognóstico , Manejo de Espécimes , Carga Tumoral , Adulto Jovem
11.
Biomed Pharmacother ; 175: 116616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723516

RESUMO

Fluorescent probes are a powerful tool for imaging amyloid ß (Aß) plaques, the hallmark of Alzheimer's disease (AD). Herein, we report the synthesis and comprehensive characterization of 21 novel probes as well as their optical properties and binding affinities to Aß fibrils. One of these dyes, 1Ae, exhibited several improvements over FDDNP, an established biomarker for Aß- and Tau-aggregates. First, 1Ae had large Stokes shifts (138-213 nm) in various solvents, thereby reducing self-absorption. With a high quantum yield ratio (φ(dichloromethane/methanol) = 104), 1Ae also ensures minimal background emission in aqueous environments and high sensitivity. In addition, compound 1Ae exhibited low micromolar binding affinity to Aß fibrils in vitro (Kd = 1.603 µM), while increasing fluorescence emission (106-fold) compared to emission in buffer alone. Importantly, the selective binding of 1Ae to Aß1-42 fibrils was confirmed by an in cellulo assay, supported by ex vivo fluorescence microscopy of 1Ae on postmortem AD brain sections, allowing unequivocal identification of Aß plaques. The intermolecular interactions of fluorophores with Aß were elucidated by docking studies and molecular dynamics simulations. Density functional theory calculations revealed the unique photophysics of these rod-shaped fluorophores, with a twisted intramolecular charge transfer (TICT) excited state. These results provide valuable insights into the future application of such probes as potential diagnostic tools for AD in vitro and ex vivo such as determination of Aß1-42 in cerebrospinal fluid or blood.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Corantes Fluorescentes , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Corantes Fluorescentes/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/líquido cefalorraquidiano , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Microscopia de Fluorescência/métodos
12.
Front Vet Sci ; 9: 921720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968018

RESUMO

Nerve sheath tumors (NSTs) are characterized by neoplastic proliferation of Schwann cells, perineurial cells, endoneurial and/or epineurial fibroblasts. Diagnosis of NST is often challenging, particularly in distinguishing malignant NST (MNST) from other soft tissue sarcomas, or sometimes between low-grade MNST and benign NST. Recent studies in human pathology have demonstrated loss of trimethylation at lysine 27 of histone 3 (H3K27me3) in a subset of MNSTs using immunohistochemistry. Loss of H3K27me3 expression is rare in other high-grade sarcomas and also appears to be useful in distinguishing benign and low-grade MNSTs from high-grade subsets. In our retrospective study, we performed H3K27me3 immunohistochemistry in 68 canine tumors previously diagnosed as NST. We detected loss of H3K27me3 expression in 25% (n = 17) of all canine NST, including one neurofibroma, whereas 49% (n = 33) of tumors had mosaic loss of expression and 26% (n = 18) retained expression. No statistically significant differences were found between H3K27me3 expression, histopathological features of tumors, and their immunoreactivity for Sox10, claudin-1, GFAP, and Ki67. Because the classification of canine NST is not yet fully established and its correlation with the prognosis and clinical course of the disease is lacking, prospective studies with possible genetic analyses are needed to assess the true diagnostic value of H3K27me3 loss in canine NST.

13.
Commun Biol ; 5(1): 436, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538218

RESUMO

Glioblastomas remain the most lethal primary brain tumors. Natural killer (NK) cell-based therapy is a promising immunotherapeutic strategy in the treatment of glioblastomas, since these cells can select and lyse therapy-resistant glioblastoma stem-like cells (GSLCs). Immunotherapy with super-charged NK cells has a potential as antitumor approach since we found their efficiency to kill patient-derived GSLCs in 2D and 3D models, potentially reversing the immunosuppression also seen in the patients. In addition to their potent cytotoxicity, NK cells secrete IFN-γ, upregulate GSLC surface expression of CD54 and MHC class I and increase sensitivity of GSLCs to chemotherapeutic drugs. Moreover, NK cell localization in peri-vascular regions in glioblastoma tissues and their close contact with GSLCs in tumorospheres suggests their ability to infiltrate glioblastoma tumors and target GSLCs. Due to GSLC heterogeneity and plasticity in regards to their stage of differentiation personalized immunotherapeutic strategies should be designed to effectively target glioblastomas.


Assuntos
Glioblastoma , Diferenciação Celular , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais , Células-Tronco Neoplásicas
14.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497400

RESUMO

Glioblastoma (GBM) is one of the most aggressive cancers, comprising 60-70% of all gliomas. The large G-protein-coupled receptor family includes cannabinoid receptors CB1, CB2, GPR55, and non-specific ion receptor protein transporters TRPs. First, we found up-regulated CNR1, GPR55, and TRPV1 expression in glioma patient-derived tissue samples and cell lines compared with non-malignant brain samples. CNR1 and GPR55 did not correlate with glioma grade, whereas TRPV1 negatively correlated with grade and positively correlated with longer overall survival. This suggests a tumour-suppressor role of TRPV1. With respect to markers of GBM stem cells, preferred targets of therapy, TRPV1 and GPR55, but not CNR1, strongly correlated with different sets of stemness gene markers: NOTCH, OLIG2, CD9, TRIM28, and TUFM and CD15, SOX2, OCT4, and ID1, respectively. This is in line with the higher expression of TRPV1 and GPR55 genes in GSCs compared with differentiated GBM cells. Second, in a panel of patient-derived GSCs, we found that CBG and CBD exhibited the highest cytotoxicity at a molar ratio of 3:1. We suggest that this mixture should be tested in experimental animals and clinical studies, in which currently used Δ9-tetrahydrocannabinol (THC) is replaced with efficient and non-psychoactive CBG in adjuvant standard-of-care therapy.

15.
Folia Neuropathol ; 59(2): 205-211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34284548

RESUMO

Light-chain deposition disease (LCDD), a rare type of monoclonal immunoglobulin deposition disease, can be presented as systemic or localized, very rarely affecting central nervous system (CNS). Only 10 cases of CNS-LCDD have been described so far. We present an eleventh case of cerebral tumour-like LCDD, called aggregoma, and compare it with previously reported cases. A 49-year-old patient was admitted to the hospital due to a first generalized epileptic seizure. Magnetic resonance imaging (MRI) showed focal lesion in the right occipital lobe. Abundant parenchymal aggregates of pale eosinophilic material were observed, Congo red negative, Thioflavin T moderately positive, and l-light chain positive, but k negative in immunofluorescence with mild perivascular lymphoplasmacytic infiltrates in the intervening brain tissue. Clonality testing by next-generation sequencing showed the monoclonal nature of B-lymphocytes. Electron microscopy showed a finely granular ultrastructure of the aggregates without deposition in the vessel walls. A whole-body workup did not show any extra-cerebral immune dyscrasias.


Assuntos
Encéfalo , Cadeias Leves de Imunoglobulina , Encéfalo/metabolismo , Proliferação de Células , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade
16.
Thorac Cancer ; 12(11): 1757-1760, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33830653

RESUMO

Here, we present the case of a 28-year-old woman who developed severe and progressive thymoma-associated constrictive bronchiolitis with bronchiectasis, despite undergoing thymectomy. The disease was further complicated by radiation-induced organizing pneumonia (RIOP), which developed after adjuvant radiotherapy (RT) for Masaoka stage II thymoma. The patient was successfully treated with an urgent lung transplantation (LTx) for irreversible respiratory failure.


Assuntos
Bronquiectasia/terapia , Bronquiolite Obliterante/terapia , Transplante de Pulmão/métodos , Pneumonite por Radiação/terapia , Neoplasias do Timo/terapia , Adulto , Feminino , Humanos
17.
Cell Oncol (Dordr) ; 44(5): 1051-1063, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34189679

RESUMO

PURPOSE: Glioblastoma, the most aggressive type of brain cancer, is composed of heterogeneous populations of differentiated cells, cancer stem cells and immune cells. Cystatin F, an endogenous inhibitor of lysosomal cysteine peptidases, regulates the function of cytotoxic immune cells. The aim of this study was to determine which type of cells expresses cystatin F in glioblastoma and to determine the role of cystatin F during disease progression. METHODS: RT-qPCR and immunohistochemistry were used to determine cystatin F mRNA and protein levels in glioblastoma tissue samples. The internalization of cystatin F was analyzed by Western blotting. Enzyme kinetics, real time invasion and calcein release cytotoxicity assays were used to assess the role of internalized cystatin F. RESULTS: We found that cystatin F was not expressed in non-cancer brain tissues, but that its expression increased with glioma progression. In tumor tissues, extensive staining was observed in cancer stem-like cells and microglia/monocytes, which secrete cystatin F into their microenvironment. In trans activity of cystatin F was confirmed using an in vitro glioblastoma cell model. Internalized cystatin F affected cathepsin L activity in glioblastoma cells and decreased their invasiveness. In addition, we found that cystatin F decreased the susceptibility of glioblastoma cells to the cytotoxic activity of natural killer (NK) cells. CONCLUSIONS: Our data implicate cystatin F as a mediator of immune suppression in glioblastoma. Increased cystatin F mRNA and protein levels in immune, glioblastoma and glioblastoma stem-like cells or trans internalized cystatin F may have an impact on decreased susceptibility of glioblastoma cells to NK cytotoxicity.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Cistatinas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Células Matadoras Naturais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Cistatinas/metabolismo , Citotoxicidade Imunológica/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Microglia/metabolismo , Monócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
18.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298634

RESUMO

Glioblastoma is the most common and malignant brain malignancy worldwide, with a 10-year survival of only 0.7%. Aggressive multimodal treatment is not enough to increase life expectancy and provide good quality of life for glioblastoma patients. In addition, despite decades of research, there are no established biomarkers for early disease diagnosis and monitoring of patient response to treatment. High throughput sequencing technologies allow for the identification of unique molecules from large clinically annotated datasets. Thus, the aim of our study was to identify significant molecular changes between short- and long-term glioblastoma survivors by transcriptome RNA sequencing profiling, followed by differential pathway-activation-level analysis. We used data from the publicly available repositories The Cancer Genome Atlas (TCGA; number of annotated cases = 135) and Chinese Glioma Genome Atlas (CGGA; number of annotated cases = 218), and experimental clinically annotated glioblastoma tissue samples from the Institute of Pathology, Faculty of Medicine in Ljubljana corresponding to 2-58 months overall survival (n = 16). We found one differential gene for long noncoding RNA CRNDE whose overexpression showed correlation to poor patient OS. Moreover, we identified overlapping sets of congruently regulated differential genes involved in cell growth, division, and migration, structure and dynamics of extracellular matrix, DNA methylation, and regulation through noncoding RNAs. Gene ontology analysis can provide additional information about the function of protein- and nonprotein-coding genes of interest and the processes in which they are involved. In the future, this can shape the design of more targeted therapeutic approaches.

19.
Ther Adv Med Oncol ; 12: 1758835920915302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426045

RESUMO

BACKGROUND: Glioblastoma is a particularly common and very aggressive primary brain tumour. One of the main causes of therapy failure is the presence of glioblastoma stem cells that are resistant to chemotherapy and radiotherapy, and that have the potential to form new tumours. This study focuses on validation of eight novel antigens, TRIM28, nucleolin, vimentin, nucleosome assembly protein 1-like 1 (NAP1L1), mitochondrial translation elongation factor (EF-TU) (TUFM), dihydropyrimidinase-related protein 2 (DPYSL2), collapsin response mediator protein 1 (CRMP1) and Aly/REF export factor (ALYREF), as putative glioblastoma targets, using nanobodies. METHODS: Expression of these eight antigens was analysed at the cellular level by qPCR, ELISA and immunocytochemistry, and in tissues by immunohistochemistry. The cytotoxic effects of the nanobodies were determined using AlamarBlue and water-soluble tetrazolium tests. Annexin V/propidium iodide tests were used to determine apoptotsis/necrosis of the cells in the presence of the nanobodies. Cell migration assays were performed to determine the effects of the nanobodies on cell migration. RESULTS: NAP1L1 and CRMP1 were significantly overexpressed in glioblastoma stem cells in comparison with astrocytes and glioblastoma cell lines at the mRNA and protein levels. Vimentin, DPYSL2 and ALYREF were overexpressed in glioblastoma cell lines only at the protein level. The functional part of the study examined the cytotoxic effects of the nanobodies on glioblastoma cell lines. Four of the nanobodies were selected in terms of their specificity towards glioblastoma cells and protein overexpression: anti-vimentin (Nb79), anti-NAP1L1 (Nb179), anti-TUFM (Nb225) and anti-DPYSL2 (Nb314). In further experiments to optimise the nanobody treatment schemes, to increase their effects, and to determine their impact on migration of glioblastoma cells, the anti-TUFM nanobody showed large cytotoxic effects on glioblastoma stem cells, while the anti-vimentin, anti-NAP1L1 and anti-DPYSL2 nanobodies were indicated as agents to target mature glioblastoma cells. The anti-vimentin nanobody also had significant effects on migration of mature glioblastoma cells. CONCLUSION: Nb79 (anti-vimentin), Nb179 (anti-NAP1L1), Nb225 (anti-TUFM) and Nb314 (anti-DPYSL2) nanobodies are indicated for further examination for cell targeting. The anti-TUFM nanobody, Nb225, is particularly potent for inhibition of cell growth after long-term exposure of glioblastoma stem cells, with minor effects seen for astrocytes. The anti-vimentin nanobody represents an agent for inhibition of cell migration.

20.
J Histochem Cytochem ; 68(1): 33-57, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566074

RESUMO

Glioblastoma is the most aggressive primary brain tumor. Slowly dividing and therapy-resistant glioblastoma stem cells (GSCs) reside in protective peri-arteriolar niches and are held responsible for glioblastoma recurrence. Recently, we showed similarities between GSC niches and hematopoietic stem cell (HSC) niches in bone marrow. Acute myeloid leukemia (AML) cells hijack HSC niches and are transformed into therapy-resistant leukemic stem cells (LSCs). Current clinical trials are focussed on removal of LSCs out of HSC niches to differentiate and to become sensitized to chemotherapy. In the present study, we elaborated further on these similarities by immunohistochemical analyses of 17 biomarkers in paraffin sections of human glioblastoma and human bone marrow. We found all 17 biomarkers to be expressed both in hypoxic peri-arteriolar HSC niches in bone marrow and hypoxic peri-arteriolar GSC niches in glioblastoma. Our findings implicate that GSC niches are being formed in glioblastoma as a copy of HSC niches in bone marrow. These similarities between HSC niches and GSC niches provide a theoretic basis for the development of novel strategies to force GSCs out of their niches, in a similar manner as in AML, to induce GSC differentiation and proliferation to render them more sensitive to anti-glioblastoma therapies.


Assuntos
Células da Medula Óssea/citologia , Glioblastoma/imunologia , Glioblastoma/patologia , Nicho de Células-Tronco , Animais , Linhagem Celular Tumoral , Glioblastoma/terapia , Células-Tronco Hematopoéticas/patologia , Humanos , Imagem Óptica , Hipóxia Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA