Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065974

RESUMO

Climbing gyms aim to continuously improve their offerings and make the best use of their infrastructure to provide a unique experience for their clients, the climbers. One approach to achieve this goal is to track and analyze climbing sessions from the beginning of the ascent until the climber's descent. Detecting the climber's descent is crucial because it indicates when the ascent has ended. This paper discusses an approach that preserves climber privacy (e.g., not using cameras) while considering the convenience of climbers and the costs to the gyms. To this aim, a hardware prototype has been developed to collect data using accelerometer sensors attached to a piece of climbing equipment mounted on the wall, called a quickdraw, which connects the climbing rope to the bolt anchors. The sensors are configured to be energy-efficient, making them practical in terms of expenses and time required for replacement when used in large quantities in a climbing gym. This paper describes the hardware specifications, studies data measured by the sensors in ultra-low power mode, detects sensors' orientation patterns during descent on different routes, and develops a supervised approach to identify lowering. Additionally, the study emphasizes the benefits of multidisciplinary feature engineering, combining domain-specific knowledge with machine learning to enhance performance and simplify implementation.

2.
Adv Neurobiol ; 36: 95-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468029

RESUMO

Over the past 40 years, from its classical application in the characterization of geometrical objects, fractal analysis has been progressively applied to study time series in several different disciplines. In neuroscience, starting from identifying the fractal properties of neuronal and brain architecture, attention has shifted to evaluating brain signals in the time domain. Classical linear methods applied to analyzing neurophysiological signals can lead to classifying irregular components as noise, with a potential loss of information. Thus, characterizing fractal properties, namely, self-similarity, scale invariance, and fractal dimension (FD), can provide relevant information on these signals in physiological and pathological conditions. Several methods have been proposed to estimate the fractal properties of these neurophysiological signals. However, the effects of signal characteristics (e.g., its stationarity) and other signal parameters, such as sampling frequency, amplitude, and noise level, have partially been tested. In this chapter, we first outline the main properties of fractals in the domain of space (fractal geometry) and time (fractal time series). Then, after providing an overview of the available methods to estimate the FD, we test them on synthetic time series (STS) with different sampling frequencies, signal amplitudes, and noise levels. Finally, we describe and discuss the performances of each method and the effect of signal parameters on the accuracy of FD estimation.


Assuntos
Encéfalo , Fractais , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA