Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 21(2): 986-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25155991

RESUMO

Reforestation of formerly cultivated land is widely understood to accumulate above- and belowground detrital organic matter pools, including soil organic matter. However, during 40 years of study of reforestation in the subtropical southeastern USA, repeated observations of above- and belowground carbon documented that significant gains in soil organic matter (SOM) in surface soils (0-7.5 cm) were offset by significant SOM losses in subsoils (35-60 cm). Here, we extended the observation period in this long-term experiment by an additional decade, and used soil fractionation and stable isotopes and radioisotopes to explore changes in soil organic carbon and soil nitrogen that accompanied nearly 50 years of loblolly pine secondary forest development. We observed that accumulations of mineral soil C and N from 0 to 7.5 cm were almost entirely due to accumulations of light-fraction SOM. Meanwhile, losses of soil C and N from mineral soils at 35 to 60 cm were from SOM associated with silt and clay-sized particles. Isotopic signatures showed relatively large accumulations of forest-derived carbon in surface soils, and little to no accumulation of forest-derived carbon in subsoils. We argue that the land use change from old field to secondary forest drove biogeochemical and hydrological changes throughout the soil profile that enhanced microbial activity and SOM decomposition in subsoils. However, when the pine stands aged and began to transition to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth eased due to pine mortality, and subsoil organic matter levels stabilized. This study emphasizes the importance of long-term experiments and deep measurements when characterizing soil C and N responses to land use change and the remarkable paucity of such long-term soil data deeper than 30 cm.


Assuntos
Biodiversidade , Carbono/análise , Florestas , Nitrogênio/análise , Solo/química , South Carolina
2.
J Environ Qual ; 43(6): 1963-71, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602213

RESUMO

As the world's population increases, marginal lands such as drylands are likely to become more important for food production. One proven strategy for improving crop production in drylands involves shifting from conventional tillage to no-till to increase water use efficiency, especially when this shift is coupled with more intensive crop rotations. Practices such as no-till that reduce soil disturbance and increase crop residues may promote C and N storage in soil organic matter, thus promoting N retention and reducing N losses. By sampling soils 15 yr after a N tracer addition, this study compared long-term soil N retention across several agricultural management strategies in current and converted shortgrass steppe ecosystems: grazed and ungrazed native grassland, occasionally mowed planted perennial grassland, and three cropping intensities of no-till dryland cropping. We also examined effects of the environmental variables site location and topography on N retention. Overall, the long-term soil N retention of >18% in these managed semiarid ecosystems was high compared with published values for other cropped or grassland ecosystems. Cropping practices strongly influenced long-term N retention, with planted perennial grass systems retaining >90% of N in soil compared with 30% for croplands. Grazing management, topography, and site location had smaller effects on long-term N retention. Estimated 15-yr N losses were low for intact and cropped systems. This work suggests that semiarid perennial grass ecosystems are highly N retentive and that increased intensity of semiarid land management can increase the amount of protein harvested without increasing N losses.

3.
PLoS One ; 14(5): e0206563, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150398

RESUMO

Nitrogen additions are known to elicit variable responses in semi-arid ecosystems, with responses increasing with precipitation. The response of semi-arid ecosystems to nitrogen are important to understand due to their large spatial extent worldwide and the global trend of increasingly available nitrogen. In this study, we evaluated the impact of a single nitrogen addition pulse on a semi-arid big sagebrush (Artemisia tridentata) ecosystem in western Wyoming. This is important given that sagebrush ecosystems are poorly understood, despite their prevalence in the western US. In addition, large-scale nitrogen additions have begun on sagebrush landscapes in Wyoming in order to mitigate population declines in mule deer (Odocoileus hemionus). The study objectives were (1) to evaluate the effectiveness of a nitrogen fertilization pulse in increasing sagebrush biomass and forage quality, and (2) to assess effects of nitrogen addition on soil biogeochemistry and vegetation community structure. We fertilized 15 plots across 5 locations in western Wyoming using a single pulse of urea (5.5g N m-2). In addition, we immobilized available nitrogen through surface hay treatments (250g hay/m2). Nitrogen additions failed to increase growth of sagebrush, alter nitrogen content of sagebrush leaders, or alter greenhouse gas efflux from soils. The plant community also remained unchanged; total cover, species richness, and community composition were all unaffected by our treatment application. Over the two years of this study, we did not find indications of nitrogen limitation of ecosystem processes, despite a wet growing season in 2014. Thus, we have found a general lack of response to nitrogen in sagebrush ecosystems and no treatment effect of a single pulse of N to sagebrush biomass or forage quality.


Assuntos
Artemisia/efeitos dos fármacos , Nitrogênio/farmacologia , Animais , Artemisia/crescimento & desenvolvimento , Biomassa , Cervos , Ecossistema , Solo/química , Wyoming
4.
PLoS One ; 9(9): e107775, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25244190

RESUMO

Across US Great Plains grasslands, a gradient of increasing mean annual precipitation from west to east corresponds to increasing aboveground net primary productivity (ANPP) and increasing N-limitation. Previous work has shown that there is no increase in net N mineralization rates across this gradient, leading to the question of where eastern prairie grasses obtain the nitrogen to support production. One as-yet unexamined source is soil organic N, despite abundant literature from other ecosystems showing that plants take up dissolved soil organic N. This study measured KCl-extractable dissolved organic N (DON) in surface soils across the grassland productivity gradient. We found that KCl-extractable DON pools increased from west to east. If available to and used by plants, this DON may help explain the high ANPP in the eastern Great Plains. These results suggest a need for future research to determine whether, in what quantities, and in what forms prairie grasses use organic N to support primary production.


Assuntos
Ecossistema , Nitrogênio/análise , Solo/química , Poaceae , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA