Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Dev Cell ; 8(4): 493-504, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15809032

RESUMO

Echinoid is an immunoglobulin domain-containing transmembrane protein that modulates cell-cell signaling by Notch and the EGF receptors. We show that, in the Drosophila wing disc epithelium, Echinoid is a component of adherens junctions that cooperates with DE-Cadherin in cell adhesion. Echinoid and beta-catenin (a DE-Cadherin interacting protein) each possess a C-terminal PDZ domain binding motif that binds to Bazooka/PAR-3; these motifs redundantly position Bazooka to adherens junctions. Echinoid also links to actin filaments by binding to Canoe/AF-6/afadin. Moreover, interfaces between Echinoid- and Echinoid+ cells, like those between DE-Cadherin- and DE-Cadherin+ cells, are deficient in adherens junctions and form actin cables. These characteristics probably facilitate the strong sorting behavior of cells that lack either of these cell-adhesion molecules. Finally, cells lacking either Echinoid or DE-Cadherin accumulate a high density of the reciprocal protein, further suggesting that Echinoid and DE-Cadherin play similar and complementary roles in cell adhesion.


Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Adesão Celular/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas Repressoras/metabolismo , Actinas/metabolismo , Junções Aderentes/química , Animais , Caderinas/genética , Moléculas de Adesão Celular/genética , Forma Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Estruturas Embrionárias/citologia , Estruturas Embrionárias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Morfogênese , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento
2.
Curr Opin Genet Dev ; 12(4): 403-8, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12100884

RESUMO

We review recent work that shows that the iroquois (Iro/Irx) homeobox genes have conserved genomic organization in Drosophila and vertebrates. In addition, these genes play pivotal functions in the initial specification of the vertebrate neuroectoderm, and, in collaboration with other transcription factors, later subdivision of the anterior-posterior and dorso-ventral axis of the neuroectoderm.


Assuntos
Proteínas de Homeodomínio/genética , Sistema Nervoso/embriologia , Fatores de Transcrição/genética , Vertebrados/genética , Animais , Evolução Molecular , Duplicação Gênica , Proteínas de Homeodomínio/fisiologia , Família Multigênica , Fatores de Transcrição/fisiologia , Vertebrados/embriologia , Vertebrados/fisiologia
3.
BMC Dev Biol ; 7: 106, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17880703

RESUMO

BACKGROUND: The organization of the different tissues of an animal requires mechanisms that regulate cell-cell adhesion to promote and maintain the physical separation of adjacent cell populations. In the Drosophila imaginal wing disc the iroquois homeobox genes are expressed in the notum anlage and contribute to the specification of notum identity. These genes are not expressed in the adjacent wing hinge territory. These territories are separated by an approximately straight boundary that in the mature disc is associated with an epithelial fold. The mechanism by which these two cell populations are kept separate is unclear. RESULTS: Here we show that the Iro-C genes participate in keeping the notum and wing cell populations separate. Indeed, within the notum anlage, cells not expressing Iro-C tend to join together and sort out from their Iro-C expressing neighbours. We also show that apposition of Iro-C expressing and non-expressing cells induces invagination and apico-basal shortening of the Iro-C- cells. This effect probably underlies formation of the fold that separates the notum and wing hinge territories. In addition, cells overexpressing a member of the Iro-C contact one another and become organized in a network of thin strings that surrounds and isolates large groups of non-overexpressing cells. The strings appear to exert a pulling force along their longitudinal axis. CONCLUSION: Apposition of cells expressing and non-expressing the Iro-C, as it occurs in the notum-wing hinge border of the Drosophila wing disc, influences cell behaviour. It leads to cell sorting, and cellular invagination and apical-basal shortening. These effects probably account for keeping the prospective notum and wing hinge cell populations separate and underlie epithelial fold formation. Cells that overexpress a member of the Iro-C and that confront non-expressing cells establish contacts between themselves and become organized in a network of thin strings. This is a complex and unique phenotype that might be important for the generation of a straight notum-wing hinge border.


Assuntos
Movimento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Animais , Forma Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Proteínas de Homeodomínio/genética , Fenótipo , Asas de Animais/citologia
4.
Genetics ; 173(1): 255-66, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16510782

RESUMO

The establishment of the proximo-distal (PD) axis in the legs of Drosophila melanogaster requires the expression of a nested set of transcription factors that are activated in discreet domains by secreted signaling molecules. The precise regulation of these transcription factor domains is critical for generating the stereotyped morphological characteristics that exist along the PD axis, such as the positioning of specific bristle types and leg joints. Here we provide evidence that the Zn-finger protein encoded by the gene jing is critical for PD axis formation in the Drosophila legs. Our data suggest that jing represses transcription and that it is necessary to keep the proximal gene homothorax (hth) repressed in the medial domain of the PD axis. We further show that jing is also required for alula and vein development in the adult wing. In the wing, Jing is required to repress another proximal gene, teashirt (tsh), in a small domain that will give rise to the alula. Interestingly, we also demonstrate that two other genes affecting alula development, Alula and elbow, also exhibit tsh derepression in the same region of the wing disc as jing- clones. Finally, we show that jing genetically interacts with several members of the Polycomb (Pc) group of genes during development. Together, our data suggest that jing encodes a transcriptional repressor that may participate in a subset of Pc-dependent activities during Drosophila appendage development.


Assuntos
Padronização Corporal , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Extremidade Inferior/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento , Animais , Drosophila melanogaster/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos/genética , Proteínas de Homeodomínio/metabolismo , Extremidade Inferior/anatomia & histologia , Extremidade Inferior/embriologia , Masculino , Fenótipo , Complexo Repressor Polycomb 1 , Ligação Proteica , Proteínas Repressoras/metabolismo , Transcrição Gênica , Veias/citologia , Asas de Animais/citologia , Asas de Animais/embriologia
5.
Genetics ; 163(4): 1403-12, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12702684

RESUMO

The Tufted(1) (Tft(1)) dominant mutation promotes the generation of ectopic bristles (macrochaetae) in the dorsal mesothorax of Drosophila. Here we show that Tft(1) corresponds to a gain-of-function allele of the proneural gene amos that is associated with a chromosomal aberration at 36F-37A. This causes ectopic expression of amos in large domains of the lateral-dorsal embryonic ectoderm, which results in supernumerary neurons of the PNS, and in the notum region of the third instar imaginal wing, which gives rise to the mesothoracic extra bristles. Revertants of Tft(1), which lack ectopic neurons and bristles, do not show ectopic expression of amos. One revertant is a loss-of-function allele of amos and has a recessive phenotype in the embryonic PNS. Our results suggest that both normal and ectopic Tft(1) bristles are generated following similar rules, and both are subjected to Notch-mediated lateral inhibition. The ability of Tft(1) bristles to appear close together may be due to amos having a stronger proneural capacity than that of other proneural genes like asense and scute. This ability might be related to the wild-type function of amos in promoting development of large clusters of closely spaced olfactory sensilla.


Assuntos
Drosophila/genética , Fatores de Crescimento Neural/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/anatomia & histologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Malformações do Sistema Nervoso/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Mech Dev ; 110(1-2): 209-11, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11744385

RESUMO

The iroquois (iro) genes encode evolutionary conserved homeoproteins that participate in many developmental processes [reviewed in Development 128 (2001) 2847]. In Xenopus, the Iro protein Xiro1 is a repressor, required during gastrulation for neural plate formation, that downregulates Bmp4. During neurulation, Xiro1 participates in the pattering of the neuroectoderm. In this work, we report the cloning and pattern of expression of XCoREST, another gene repressed by Xiro1. During Xenopus development, XCoREST is expressed in territories in which neurogenesis takes place.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Xenopus/embriologia , Xenopus/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Proteínas Correpressoras , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Humanos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
7.
Mech Dev ; 119(1): 69-80, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12385755

RESUMO

The iroquois (iro) homeobox genes participate in many developmental processes both in vertebrates and invertebrates, among them are neural plate formation and neural patterning. In this work, we study in detail Xenopus Iro (Xiro) function in primary neurogenesis. We show that misexpression of Xiro genes promotes the activation of the proneural gene Xngnr1 but suppresses neuronal differentiation. This is probably due to upregulation of at least two neuronal-fate repressors: XHairy2A and XZic2. Accordingly, primary neurons arise at the border of the Xiro expression domains. In addition, we identify XGadd45-gamma as a new gene repressed by Xiro. XGadd45-gamma encodes a cell-cycle inhibitor and is expressed in territories where cells will exit mitosis, such as those where primary neurons arise. Indeed, XGadd45-gamma misexpression causes cell cycle arrest. We conclude that, during Xenopus primary neuron formation, in Xiro expressing territories neuronal differentiation is impaired, while in adjacent cells, XGadd45-gamma may help cells stop dividing and differentiate as neurons.


Assuntos
Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Biossíntese de Proteínas , Proteínas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Regulação para Cima , Proteínas de Xenopus , Sequência de Aminoácidos , Animais , Ciclo Celular , Diferenciação Celular , Divisão Celular , Cicloeximida/farmacologia , DNA Complementar/metabolismo , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso , Plasmídeos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , RNA/metabolismo , RNA Mensageiro/metabolismo , Receptores Notch , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Xenopus , Proteínas GADD45
8.
Mech Dev ; 127(9-12): 393-406, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20580820

RESUMO

Early in the development of the imaginal wing disc of Drosophila, the LIM-HD gene tailup (islet), together with the HD genes of the iroquois complex, specify the notum territory of the disc. Later, tailup has been shown to act as a prepattern gene that antagonizes formation of sensory bristles on the notum of this fly. It has been proposed that Tailup downregulates the expression of the proneural genes achaete and scute by interfering with factors needed to activate these genes in the dorsocentral and scutellar regions of the disc. By means of a clonal analysis performed with tailup null alleles, here we show that, on the one hand, tailup is necessary to prevent formation of extra macrochaetae on most of the 11 sites where these landmark bristles arise on the fly notum. On the other hand, tailup is required to activate achaete and scute at the dorsocentral region, probably by acting as an hexameric complex with the cofactor Chip and the transcriptional activator Sspd on the dorsocentral enhancer of the achaete-scute complex. In contrast, in the scutellar region Tailup acts downstream of achaete-scute, antagonizing the proneural function of these genes probably in cooperation with Chip. We conclude that tailup acts on bristle development by several, even antagonistic, mechanisms.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Asas de Animais/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Elementos Facilitadores Genéticos/genética , Genes de Insetos , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo , Asas de Animais/anatomia & histologia , Asas de Animais/citologia
9.
Development ; 134(9): 1779-88, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17409113

RESUMO

The LIM-HD gene tailup (tup; also known as islet) has been categorised as a prepattern gene that antagonises the formation of sensory bristles on the notum of Drosophila by downregulating the expression of the proneural achaete-scute genes. Here we show that tup has an earlier function in the development of the imaginal wing disc; namely, the specification of the notum territory. Absence of tup function causes cells of this anlage to upregulate different wing-hinge genes and to lose expression of some notum genes. Consistently, these cells differentiate hinge structures or modified notum cuticle. The LIM-HD co-factors Chip and Ssdp are also necessary for notum specification. This suggests that Tup acts in this process in a complex with Chip and Ssdp. Overexpression of tup, together with araucan, a 'pronotum' gene of the iroquois complex (Iro-C), synergistically reinforces the weak capacity of either gene, when overexpressed singly, to induce ectopic notum-like development. Whereas the Iro-C genes are activated in the notum anlage by EGFR signalling, tup is positively regulated by Dpp signalling. Our data support a model in which the EGFR and Dpp signalling pathways, with their respective downstream Iro-C and tup genes, converge and cooperate to commit cells to the notum developmental fate.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Padronização Corporal , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Asas de Animais/embriologia
10.
Development ; 132(18): 4087-96, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16093324

RESUMO

During development, the imaginal wing disc of Drosophila is subdivided into territories separated by developmental boundaries. The best characterized boundaries delimit compartments defined by cell-lineage restrictions. Here, we analyze the formation of a boundary that does not rely on such restrictions, namely, that which separates the notum (body wall) and the wing hinge (appendage). It is known that the homeobox genes of the Iroquois complex (Iro-C) define the notum territory and that the distal limit of the Iro-C expression domain demarks the boundary between the notum and the wing hinge. However, it is unclear how this boundary is established and maintained. We now find that msh, a homeobox gene of the Msx family, is strongly expressed in the territory of the hinge contiguous to the Iro-C domain. Loss- and gain-of-function analyses show that msh maintains Iro-C repressed in the hinge, while Iro-C prevents high level expression of msh in the notum. Thus, a mutual repression between msh and Iro-C is essential to set the limit between the contiguous domains of expression of these genes and therefore to establish and/or maintain the boundary between body wall and wing. In addition, we find that msh is necessary for proper growth of the hinge territory and the differentiation of hinge structures. msh also participates in the patterning of the notum, where it is expressed at low levels.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Asas de Animais/embriologia , Animais , Clonagem Molecular , Oligonucleotídeos , beta-Galactosidase
11.
Development ; 132(6): 1211-22, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15703278

RESUMO

The proneural genes achaete (ac) and scute (sc) are necessary for the formation of the external sensory organs (SOs) of Drosophila. ac and sc are expressed in proneural clusters and impart their cells with neural potential. For this potential to be realized, and the SO precursor cell (SOP) to arise within a cluster, sufficient proneural protein must accumulate in the cluster. Here we describe a novel gene, charlatan (chn), which encodes a zinc finger transcription factor that facilitates this accumulation by forming a stimulatory loop with ac/sc. We find that loss of function of chn decreases the accumulation of Sc in proneural clusters and partially removes notum macrochaetae, while overexpression of chn enhances ac/sc expression and the formation of extra SOs. Moreover, chn is activated by ac/sc in proneural clusters. Chn apparently stimulates ac/sc by physically interacting with the proneural cluster-specific enhancers and increasing enhancer efficiency, thus acting as a stimulator of ac/sc expression in proneural clusters. chn is also required for the proper development of the embryonic peripheral nervous system, as its absence leads to loss of neurons and causes aberrant development of chordotonal organs.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Genes Reporter , Dedos de Zinco/genética , Dedos de Zinco/fisiologia
12.
Development ; 129(16): 3815-23, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12135920

RESUMO

During development, the imaginal wing disc of Drosophila is subdivided along the proximal-distal axis into different territories that will give rise to body wall (notum and mesothoracic pleura) and appendage (wing hinge and wing blade). Expression of the Iroquois complex (Iro-C) homeobox genes in the most proximal part of the disc defines the notum, since Iro-C(-) cells within this territory acquire the identity of the adjacent distal region, the wing hinge. Here we analyze how the expression of Iro-C is confined to the notum territory. Neither Wingless signalling, which is essential for wing development, nor Vein-dependent EGFR signalling, which is needed to activate Iro-C, appear to delimit Iro-C expression. We show that a main effector of this confinement is the TGFbeta homolog Decapentaplegic (Dpp), a molecule known to pattern the disc along its anterior-posterior axis. At early second larval instar, the Dpp signalling pathway functions only in the wing and hinge territories, represses Iro-C and confines its expression to the notum territory. Later, Dpp becomes expressed in the most proximal part of the notum and turns off Iro-C in this region. This downregulation is associated with the subdivision of the notum into medial and lateral regions.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Animais , Padronização Corporal , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Receptores ErbB/genética , Receptores ErbB/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Genes de Insetos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1
13.
Genetica ; 122(3): 311-24, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15609554

RESUMO

The 3A and 60E regions of Drosophila melanogaster polytene chromosomes containing inserted copies of the P[1ArB] transposon have been subjected to an electron microscopic (EM) analysis. We show that both inserts led to formation of new bands within the interband regions 3A4/A6 and 60E8-9/E10. This allowed us to clone DNA of these interbands. Their sequences, as well as those of DNA from other four interbands described earlier, have been analyzed. We have found that, with the exception of 60E8-9/E10 interband, all other five regions under study corresponded to 5' or 3' ends of genes. We have further obtained the evidence for 60E8-9/E10 interband to harbor the 'housekeeping' RpL19 gene, which is transcribed in many tissues, including salivary glands. Based upon the genetic heterogeneity of the interbands observed a revised model of polytene chromosome organization is discussed.


Assuntos
Cromossomos/genética , Drosophila melanogaster/genética , Animais , Bandeamento Cromossômico , Cromossomos/fisiologia , Cromossomos/ultraestrutura , Clonagem Molecular , Elementos de DNA Transponíveis , Microscopia Eletrônica , Análise de Sequência de DNA
14.
Development ; 130(25): 6305-16, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14623820

RESUMO

echinoid (ed) encodes an immunoglobulin domain-containing cell adhesion molecule that negatively regulates the Egfr signaling pathway during Drosophila photoreceptor development. We show a novel function of Ed, i.e. the restriction of the number of notum bristles that arise from a proneural cluster. Thus, loss-of-function conditions for ed give rise to the development of extra macrochaetae near the extant ones and increase the density of microchaetae. Analysis of ed mosaics indicates that extra sensory organ precursors (SOPs) arise from proneural clusters of achaete-scute expression in a cell-autonomous way. ed embryos also exhibit a neurogenic phenotype. These phenotypes suggest a functional relation between ed and the Notch (N) pathway. Indeed, loss-of-function of ed reduces the expression of the N pathway effector E(spl)m8 in proneural clusters. Moreover, combinations of moderate loss-of-function conditions for ed and for different components of the N pathway show clear synergistic interactions manifested as strong neurogenic bristle phenotypes. We conclude that Ed is not essential for, but it facilitates, N signaling. It is known that the N and Egfr pathways act antagonistically in bristle development. Consistently, we find that Ed also antagonizes the bristle-promoting activity of the Egfr pathway, either by the enhancement of N signalling or, similar to the eye, by a more direct action on the Egfr pathway.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Células Fotorreceptoras/embriologia , Proteínas Repressoras/genética , Vibrissas/fisiologia , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/fisiologia , Clonagem Molecular , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Sinergismo Farmacológico , Epitopos/química , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Mosaicismo , Família Multigênica , Mutagênese , Sistema Nervoso/embriologia , Fragmentos de Peptídeos/química , Receptores Notch , Proteínas Repressoras/química , Proteínas Repressoras/fisiologia , Vibrissas/embriologia
15.
Dev Biol ; 264(2): 564-81, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14651938

RESUMO

We have identified and functionally characterized the Xenopus Xlmo4 gene, which encodes a member of the LIM-domain-only protein family. Xlmo4 is activated at gastrula stages in the mesodermal marginal zone probably in response to BMP4 signaling. Soon after, Xlmo4 is downregulated in the dorsal region of the mesoderm. This repression seems to be mediated by organizer-expressed repressors, such as Gsc. Xlmo4 downregulation is necessary for the proper formation of this territory. Increasing Xlmo4 function in this region downregulates Spemman Organizer genes and suppresses dorsal-anterior structures. By binding to Ldb1, Xlmo4 may restrict the availability of this cofactor for transcription factors expressed at the Spemman Organizer. In the ventral mesoderm, Xlmo4 is required to establish the identity of this territory by acting as a positive cofactor of GATA factors. In the neural ectoderm, Xlmo4 expression depends on Xiro homeoprotein activity. In this region, Xlmo4 suppresses differentiation of primary neurons and interferes with gene expression at the Isthmic Organizer, most likely by displacing Ldb1 from active transcription factor complexes required for these processes. Together, our data suggest that Xlmo4 uses distinct mechanisms to participate in different processes during development.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Homeodomínio/fisiologia , Mesoderma/fisiologia , Sistema Nervoso/embriologia , Fatores de Transcrição/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/fisiologia , Fator de Transcrição GATA2 , Proteínas com Domínio LIM
16.
EMBO Rep ; 3(1): 34-8, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11751581

RESUMO

The Drosophila melanogaster genome consists of four chromosomes that contain 165 Mb of DNA, 120 Mb of which are euchromatic. The two Drosophila Genome Projects, in collaboration with Celera Genomics Systems, have sequenced the genome, complementing the previously established physical and genetic maps. In addition, the Berkeley Drosophila Genome Project has undertaken large-scale functional analysis based on mutagenesis by transposable P element insertions into autosomes. Here, we present a large-scale P element insertion screen for vital gene functions and a BAC tiling map for the X chromosome. A collection of 501 X-chromosomal P element insertion lines was used to map essential genes cytogenetically and to establish short sequence tags (STSs) linking the insertion sites to the genome. The distribution of the P element integration sites, the identified genes and transcription units as well as the expression patterns of the P-element-tagged enhancers is described and discussed.


Assuntos
Mapeamento Cromossômico , Drosophila melanogaster/genética , Cromossomo X , Animais , Cromossomos Artificiais Bacterianos , Mapeamento de Sequências Contíguas , Sondas de DNA , Elementos de DNA Transponíveis , Feminino , Genes Essenciais , Genes de Insetos , Masculino , Mutagênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA