Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Periodontal Res ; 57(3): 545-557, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35246839

RESUMO

BACKGROUND AND OBJECTIVES: Many studies have been conducted to better understand the molecular mechanism involved with periodontitis progression. There has been growing interest in the potential impact of obesity on periodontitis onset and progression, but the mechanisms involved remain to be elucidated. The present study was designed to determine the impact of obesity on experimentally induced periodontitis in rats and identify novel pathways involved. METHODS: Sixteen Holtzman rats were distributed into two groups (n = 8): ligature-induced periodontitis (P) and obesity plus ligature-induced periodontitis (OP). Obesity was induced by a high-fat diet for 70 days, whereas periodontitis was induced for 20 days, with a cotton thread placed around the upper first molars bilaterally. Alveolar bone loss was measured by microtomographic analysis and histologically by histometry on the hemimaxillae. The protein composition of the periodontal ligament was evaluated by proteomic analysis. RESULTS: Data analysis (body weight, adipose tissue weight, and blood test) confirmed obesity induction, whereas bone loss was confirmed by micro-CT and histologic analyses. Proteome analysis from the periodontal ligament tissues (PDL) identified 819 proteins, 53 exclusive to the P group, 28 exclusive to the OP group, and 738 commonly expressed. Validation was performed by immunohistochemistry for selected proteins (spondin1, vinculin, and TRAP). CONCLUSION: Histologically, it was found that obesity did not significantly affect bone loss resulting from periodontitis. However, the present study's findings indicated that obesity affects the proteome of PDL submitted to experimental periodontitis, allowing for identifying potential targets for personalized approaches.


Assuntos
Perda do Osso Alveolar , Periodontite , Perda do Osso Alveolar/patologia , Animais , Obesidade/complicações , Ligamento Periodontal/metabolismo , Periodontite/metabolismo , Proteoma , Proteômica , Ratos , Ratos Wistar
2.
Plant Mol Biol ; 101(4-5): 517, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31624993

RESUMO

All the transcriptome sequencing data mentioned in the original article is publicly available at the National Center of Biotechnology Information (NCBI).

3.
Plant Mol Biol ; 95(6): 607-623, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29094279

RESUMO

KEY MESSAGE: We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee-H. vastatrix interaction over a time course in susceptible and resistant coffee plants.


Assuntos
Basidiomycota/fisiologia , Café/genética , Café/microbiologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Café/imunologia , Biblioteca Gênica , Estudos de Associação Genética , Interações Hospedeiro-Patógeno/genética , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transcriptoma/genética , Regulação para Cima/genética
4.
BMC Plant Biol ; 16: 94, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27095276

RESUMO

BACKGROUND: Drought is a widespread limiting factor in coffee plants. It affects plant development, fruit production, bean development and consequently beverage quality. Genetic diversity for drought tolerance exists within the coffee genus. However, the molecular mechanisms underlying the adaptation of coffee plants to drought are largely unknown. In this study, we compared the molecular responses to drought in two commercial cultivars (IAPAR59, drought-tolerant and Rubi, drought-susceptible) of Coffea arabica grown in the field under control (irrigation) and drought conditions using the pyrosequencing of RNA extracted from shoot apices and analysing the expression of 38 candidate genes. RESULTS: Pyrosequencing from shoot apices generated a total of 34.7 Mbp and 535,544 reads enabling the identification of 43,087 clusters (41,512 contigs and 1,575 singletons). These data included 17,719 clusters (16,238 contigs and 1,575 singletons) exclusively from 454 sequencing reads, along with 25,368 hybrid clusters assembled with 454 sequences. The comparison of DNA libraries identified new candidate genes (n = 20) presenting differential expression between IAPAR59 and Rubi and/or drought conditions. Their expression was monitored in plagiotropic buds, together with those of other (n = 18) candidates genes. Under drought conditions, up-regulated expression was observed in IAPAR59 but not in Rubi for CaSTK1 (protein kinase), CaSAMT1 (SAM-dependent methyltransferase), CaSLP1 (plant development) and CaMAS1 (ABA biosynthesis). Interestingly, the expression of lipid-transfer protein (nsLTP) genes was also highly up-regulated under drought conditions in IAPAR59. This may have been related to the thicker cuticle observed on the abaxial leaf surface in IAPAR59 compared to Rubi. CONCLUSIONS: The full transcriptome assembly of C. arabica, followed by functional annotation, enabled us to identify differentially expressed genes related to drought conditions. Using these data, candidate genes were selected and their differential expression profiles were confirmed by qPCR experiments in plagiotropic buds of IAPAR59 and Rubi under drought conditions. As regards the genes up-regulated under drought conditions, specifically in the drought-tolerant IAPAR59, several corresponded to orphan genes but also to genes coding proteins involved in signal transduction pathways, as well as ABA and lipid metabolism, for example. The identification of these genes should help advance our understanding of the genetic determinism of drought tolerance in coffee.


Assuntos
Adaptação Fisiológica/genética , Coffea/genética , Secas , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Brotos de Planta/genética , Coffea/classificação , Coffea/fisiologia , Café/genética , Café/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Ontologia Genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Brotos de Planta/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
5.
J Proteomics ; 263: 104616, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595054

RESUMO

The prevalence of obesity has increased significantly worldwide. Therefore, this study aimed to evaluate the influence of obesity on the proteomic profile of periodontal ligament (PDL) tissues of rat first maxillary molars (1 M) submitted to orthodontic tooth movement (OTM). Ten Holtzman rats were distributed into two groups (n = 5): the M group (OTM), and the OM group (obesity induction plus OTM). Obesity was induced by a high-fat diet for the entire experimental periods After that period, the animals were euthanized and the hemimaxillae removed and processed for laser capture microdissection of the PDL tissues of the 1 M. Peptide extracts were obtained and analyzed by LC-MS/MS. Data are available via ProteomeXchange with identifier PXD033647. Out of the 109 proteins with differential abundance, 49 were identified in the OM group, including Vinculin, Cathepsin D, and Osteopontin, which were selected for in situ localization by immunohistochemistry analysis (IHC). Overall, Gene Ontology (GO) analysis indicated that enriched proteins were related to the GO component cellular category. IHC validated the trends for selected proteins. Our study highlights the differences in the PDL proteome profiling of healthy and obese subjects undergoing OTM. These findings may provide valuable information needed to better understand the mechanisms involved in tissue remodeling in obese patients submitted to orthodontic treatment. SIGNIFICANCE: The prevalence of obesity is increasing worldwide. Emerging findings in the field of dentistry suggest that obesity influences the tissues around the teeth, especially those in the periodontal ligament. Therefore, evaluation of the effect of obesity on periodontal tissues remodeling during orthodontic tooth movement is a relevant research topic. To our knowledge, this is the first study to evaluate proteomic changes in periodontal ligament tissue in response to the association between orthodontic tooth movement and obesity. Our study identified a novel protein profile associated with obesity by using laser microdissection and proteomic analysis, providing new information to increase understanding of the mechanisms involved in obese patients undergoing orthodontic treatment which can lead to a more personalized orthodontic treatment approach.


Assuntos
Obesidade , Ligamento Periodontal , Proteoma , Técnicas de Movimentação Dentária , Animais , Fenômenos Biomecânicos/fisiologia , Cromatografia Líquida , Humanos , Obesidade/metabolismo , Osteoclastos , Ligamento Periodontal/metabolismo , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
6.
Connect Tissue Res ; 52(3): 212-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21117895

RESUMO

The formation of an ordered enamel organic extracellular matrix (EOECM) seems to be a crucial step for the proper formation of the enamel mineral phase. The ordered supramolecular structure of the EOECM in the secretory stage can be analyzed using polarizing microscopy, as it is strongly birefringent. Excessive fluoride (F) ingestion during tooth development can cause enamel fluorosis, leading to increased porosity in mature enamel. We analyzed the effects of F on the birefringence of the EOECM in the A/J, CBA, and DBA/2 strains of mice given 0, 11.25, and 45 ppm of fluoride in drinking water. In the CBA and DBA/2 strains, the 11.25 and 45 ppmF groups presented a significant decrease in optical retardation (OR) when compared with the respective 0 (CBA 11.25 ppmF p = 0.0056 and 45 ppmF p < 0.0001; DBA/2 11.25 and 45 ppmF p < 0.05). ORs in A/J 0 ppmF were significantly higher than in 45 (p < 0.0001). The enamel of the A/J strain was more severely affected by fluoride than it was in the other strains of mice and exhibited the lowest levels of fluoride in plasma, whereas its normal secretory enamel presented a significantly higher protein absorbance than it did in CBA and DBA mice (p = 0.0099 and p = 0.0025, respectively). The results showed that experimental fluorosis can alter the supramolecular organization of EOECM in the secretory stage of amelogenesis and that the susceptibility to dental fluorosis seems to be influenced by the inherent characteristics of the developing enamel.


Assuntos
Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fluoretos/farmacologia , Animais , Osso e Ossos/metabolismo , Dieta , Fluoretos/sangue , Fluorose Dentária/patologia , Camundongos , Microscopia de Polarização , Pigmentação/efeitos dos fármacos
7.
J Appl Oral Sci ; 28: e20200242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33111882

RESUMO

BACKGROUND: Heterogeneous cell populations of osteo/cementoblastic (O/C) or fibroblastic phenotypes constitute the periodontal dental ligament (PDL). A better understanding of these PDL cell subpopulations is essential to propose regenerative approaches based on a sound biological rationale. OBJECTIVE: Our study aimed to clarify the differential transcriptome profile of PDL cells poised to differentiate into the O/C cell lineage. METHODOLOGY: To characterize periodontal-derived cells with distinct differentiation capacities, single-cell-derived clones were isolated from adult human PDL progenitor cells and their potential to differentiate into osteo/cementoblastic (O/C) phenotype (C-O clones) or fibroblastic phenotype (C-F clones) was assessed in vitro. The transcriptome profile of the clonal cell lines in standard medium cultivation was evaluated using next-generation sequencing technology (RNA-seq). Over 230 differentially expressed genes (DEG) were identified, in which C-O clones showed a higher number of upregulated genes (193) and 42 downregulated genes. RESULTS: The upregulated genes were associated with the Cadherin and Wnt signaling pathways as well as annotated biological processes, including "anatomical structure development" and "cell adhesion." Both transcriptome and RT-qPCR showed up-regulation of WNT2, WNT16, and WIF1 in C-O clones. CONCLUSIONS: This comprehensive transcriptomic assessment of human PDL progenitor cells revealed that expression of transcripts related to the biological process "anatomical structure development," Cadherin signaling, and Wnt signaling can identify PDL cells with a higher potential to commit to the O/C phenotype. A better understanding of these pathways and their function in O/C differentiation will help to improve protocols for periodontal regenerative therapies.


Assuntos
Cemento Dentário/citologia , Osteoblastos/citologia , Ligamento Periodontal/citologia , Transcriptoma , Adulto , Caderinas/metabolismo , Diferenciação Celular , Células Cultivadas , Células Clonais , Humanos , Via de Sinalização Wnt
8.
J Extracell Vesicles ; 8(1): 1578525, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788085

RESUMO

As one of the most abundant constituents of the tumour microenvironment (TME), cancer-associated fibroblasts (CAF) display critical roles during tumour progression and metastasis. Multiple classes of molecules including growth factors, cytokines, proteases and extracellular matrix proteins, are produced by CAF to act as mediators of the stroma-tumour interactions. One of the main channels for this communication is associated with extracellular vesicles (EV), which are secreted particles loaded with protein and genetic information. In this study, we evaluated the effects of EV derived from CAF primary human cell lines (n = 5) on proliferation, survival, migration, and invasion of oral squamous cell carcinoma (OSCC) cells. As controls, EV from human primary-established normal oral fibroblasts (NOF, n = 5) were used. Our in vitro assays showed that CAF-EV significantly induces migration and invasion of OSCC cells and promote a disseminated pattern of HSC-3 cell invasion in the 3D organotypic assay. Furthermore, gene expression analysis of EV-treated cancer cells revealed changes in the pathways associated with tumour metabolism and up-regulation of tumour invasion genes. Our findings suggest a significant role of CAF-EV in promoting the migration and invasion of OSCC cells, which are related to the activation of cancer-related pathways.

9.
J. appl. oral sci ; J. appl. oral sci;28: e20200242, 2020. tab, graf
Artigo em Inglês | LILACS, BBO - odontologia (Brasil) | ID: biblio-1134786

RESUMO

Abstract Heterogeneous cell populations of osteo/cementoblastic (O/C) or fibroblastic phenotypes constitute the periodontal dental ligament (PDL). A better understanding of these PDL cell subpopulations is essential to propose regenerative approaches based on a sound biological rationale. Objective Our study aimed to clarify the differential transcriptome profile of PDL cells poised to differentiate into the O/C cell lineage. Methodology To characterize periodontal-derived cells with distinct differentiation capacities, single-cell-derived clones were isolated from adult human PDL progenitor cells and their potential to differentiate into osteo/cementoblastic (O/C) phenotype (C-O clones) or fibroblastic phenotype (C-F clones) was assessed in vitro. The transcriptome profile of the clonal cell lines in standard medium cultivation was evaluated using next-generation sequencing technology (RNA-seq). Over 230 differentially expressed genes (DEG) were identified, in which C-O clones showed a higher number of upregulated genes (193) and 42 downregulated genes. Results The upregulated genes were associated with the Cadherin and Wnt signaling pathways as well as annotated biological processes, including "anatomical structure development" and "cell adhesion." Both transcriptome and RT-qPCR showed up-regulation of WNT2, WNT16, and WIF1 in C-O clones. Conclusions This comprehensive transcriptomic assessment of human PDL progenitor cells revealed that expression of transcripts related to the biological process "anatomical structure development," Cadherin signaling, and Wnt signaling can identify PDL cells with a higher potential to commit to the O/C phenotype. A better understanding of these pathways and their function in O/C differentiation will help to improve protocols for periodontal regenerative therapies.


Assuntos
Humanos , Adulto , Osteoblastos/citologia , Ligamento Periodontal/cirurgia , Cemento Dentário/citologia , Caderinas/metabolismo , Diferenciação Celular , Células Cultivadas , Células Clonais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA