Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(2): 1588-1602, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170994

RESUMO

Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) and density functional theory (DFT) are used to probe Cl- adsorption and the order-disorder phase transition associated with the c(2 × 2) Cl- adlayer on Cu(100) in acid media. A two-component ν(Cu-Cl) vibrational band centered near 260 ± 1 cm-1 is used to track the potential dependence of Cl- adsorption. The potential dependence of the dominant 260 cm-1 component tracks the coverage of the fluctional c(2 × 2) Cl- phase on terraces in good agreement with the normalized intensity of the c(2 × 2) superstructure rods in prior surface X-ray diffraction (SXRD) studies. As the c(2 × 2) Cl- coverage approaches saturation, a second ν(Cu-Cl) component mode emerges between 290 and 300 cm-1 that coincides with the onset and stiffening of step faceting where Cl- occupies the threefold hollow sites to stabilize the metal kink saturated Cu <100> step edge. The formation of the c(2 × 2) Cl- adlayer is accompanied by the strengthening of ν(O-H) stretching modes in the adjacent non-hydrogen-bonded water at 3600 cm-1 and an increase in hydronium concentration evident in the flanking H2O modes at 3100 cm-1. The polarization of the water molecules and enrichment of hydronium arise from the combination of Cl- anionic character and lateral templating provided by the c(2 × 2) adlayer, consistent with SXRD studies. At negative potentials, Cl- desorption occurs followed by development of a sulfate νs(S═O) band. Below -1.1 V vs Hg/HgSO4, a new 200 cm-1 mode emerges congruent with hydride formation and surface reconstruction reported in electrochemical scanning tunneling microscopy studies.

2.
Acc Chem Res ; 56(6): 677-688, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36848589

RESUMO

ConspectusWhere copper interconnects fabricated using superconformal electrodeposition processes have enabled dramatic advances in microelectronics over the past quarter century, gold filled gratings fabricated using superconformal Bi3+-mediated bottom-up filling electrodeposition processes promise to enable a new generation of X-ray imaging and microsystem technologies. Indeed, bottom-up Au-filled gratings have demonstrated excellent performance in X-ray phase contrast imaging of biological soft tissue and other low Z element samples even as studies using gratings with inferior Au fill have captured the potential for broader biomedical application. Four years ago, the Bi-stimulated bottom-up Au electrodeposition process was a scientific novelty where gold deposition was localized entirely on the bottoms of metallized trenches 3-µm-deep and 2-µm-wide, an aspect ratio of only 1.5, on centimeter scale fragments of patterned silicon wafers. Today the room-temperature processes routinely yield uniformly void-free filling of metallized trenches 60-µm-deep and 1-µm-wide, an aspect ratio 60, in gratings patterned across 100 mm Si wafers. Four distinctive characteristics of the evolution of void-free filling in the Bi3+-containing electrolyte are seen in experimental Au filling of fully metallized recessed features such as trenches and vias: (1) an "incubation period" of conformal deposition, (2) subsequent Bi-activated deposition localized on the bottom surface of features, (3) sustained bottom-up deposition that yields void-free filling, and (4) self-passivation of the active growth front at a distance from the feature opening defined by operating conditions. A recent model captures and explains all four features. The electrolyte solutions are simple and nontoxic, being near-neutral pH and composed of Na3Au(SO3)2 + Na2SO3 containing micromolar concentrations of Bi3+ additive, the latter generally introduced through electrodissolution from the metal. The influences of additive concentration, metal ion concentration, electrolyte pH, convection, and applied potential have been examined in some depth using both electroanalytical measurements on planar rotating disk electrodes and studies of feature filling, thereby defining and elucidating relatively wide processing windows for defect-free filling. The process control for bottom-up Au filling processes is observed to be quite flexible, with online changes of potential as well as concentration and pH adjustments during the course of filling compatible with processing. Furthermore, monitoring has enabled optimization of the filling evolution, including to shorten the incubation period for accelerated filling and to fill features of ever higher aspect ratio. The results to date indicate that the demonstrated filling of trenches with an aspect ratio of 60 represents a lower bound, a value determined only by the features presently available.

3.
Acc Chem Res ; 56(9): 1004-1017, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37076974

RESUMO

ConspectusElectronics manufacturing involves Cu electrodeposition to form 3D circuitry of arbitrary complexity. This ranges from nanometer-wide interconnects between individual transistors to increasingly large multilevel intermediate and global scale on-chip wiring. At larger scale, similar technology is used to form micrometer-sized high aspect ratio through-silicon vias (TSV) that facilitate chip stacking and multilevel printed circuit board (PCB) metallization. Common to all of these applications is void-free Cu filling of lithographically defined trenches and vias. While line-of-sight physical vapor deposition processes cannot accomplish this feat, the combination of surfactants and electrochemical or chemical vapor deposition enables preferential metal deposition within recessed surface features known as superfilling. The same superconformal film growth processes account for the long-reported but poorly understood smoothing and brightening action provided by certain electroplating additives. Prototypical surfactant additives for superconformal Cu deposition from acid-based CuSO4 electrolytes include a combination of halide, polyether suppressor, sulfonate-terminated disulfide, and/or thiol accelerator and possibly a N-bearing cationic leveler. Many competitive and coadsorption dynamics underlie functional operation of the additives. Upon immersion, Cu surfaces are rapidly covered by a saturated halide layer that makes the interface more hydrophobic, thereby supporting the formation of a polyether suppressor layer. Also, halide serves as a cosurfactant supporting the adsorption of amphiphilic molecular disulfide species on the surface while inhibiting copper sulfide formation and incorporation into the growing deposit. Furthermore, the dangling hydrophilic sulfonate end group of the accelerator enables activated metal deposition by hindering polyether suppressor assembly. A common thread in superconformal feature filling is additive-derived positive feedback of the metal deposition reaction within recessed or re-entrant regions. For submicrometer features or optically rough surfaces, area reduction that accompanies the motion of concave surface segments results in the most strongly bound adsorbates' enrichment, which for the suppressor-accelerator systems is the sulfonate-terminated disulfide accelerator species. The superfilling and smoothing process is quantitatively captured by the curvature-enhanced adsorbate coverage mechanism. For larger features, such as TSV, whose depths approach the thickness of the hydrodynamic boundary layer, significant compositional and electrical gradients couple with the metal deposition process to give a negative differential resistance and related nonlinear effects on morphological evolution. For certain suppressor-only electrolytes, remarkable bottom-up feature filling occurs where metal deposition disrupts inhibiting adsorbates at the bottom of the TSV or overruns the ability of the suppressor to form due to kinetic or transport limitations. Because the electrical response to changes in interface chemistry is more rapid than mass transport processes, deposition on planar substrates proceeds by bifurcation into passive and active zones, generating Turing patterns. On patterned substrates, active zone development is biased toward the most recessed regions. The distinction between packaging and on-chip metallization will be blurred as the dimensions of the former merge with those of early day on-chip 3D metallization.

4.
Langmuir ; 39(14): 4924-4935, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37000573

RESUMO

Anisotropic growth of a single filament on a microelectrode is demonstrated by galvanostatic electrodeposition in a bistable passive-active critical system. Specifically, a Cu filament is formed by disruption of a passivating polyether-halide bilayer triggered by metal deposition with positive feedback guiding highly localized deposition. For macroscale electrodes, complex passive-active Turing patterns develop, while for micrometer-sized electrodes, bifurcation is frustrated and a single active zone develops, which is reinforced by hemispherical transport. As deposition proceeds, hemispherical symmetry is broken with lateral propagation of a single filament while an increasing fraction of the applied current supports expansion of the passive sidewall area that eventually leads to termination of anisotropic growth. Different polyether suppressors alter the dynamic range between passive and active growth that determines the shape and extent of filament formation. The impact of electrode area, geometry, and applied current on morphological evolution was also briefly examined. The results highlight the utility of appropriately scaled microelectrodes in the study of growth instabilities during breakdown of additive suppressed layers in critical electrodeposition systems.

5.
Appl Opt ; 61(13): 3850-3854, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256429

RESUMO

Precisely aligned optical components are crucial prerequisites for X-ray tomography at high resolution. We propose a device with a fractal pattern for precise automatic focusing. The device is etched in a Si substrate by deep reactive ion etching and then filled by a self-terminating bottom-up Au electroplating process. The fractal nature of the device produces an X-ray transmission image with globally homogeneous macroscopic visibility and high local contrast for pixel sizes in the range of 0.165 µm to 11 µm, while the high absorption contrast provided between Au and Si enables its use for X-ray energies ranging from 12 keV to 40 keV.

6.
Langmuir ; 34(46): 13864-13870, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30372618

RESUMO

Understanding the role of macroscopic and atomic defects in the interfacial electron transfer properties of layered transition metal dichalcogenides is important in optimizing their performance in energy conversion and electronic devices. Means of determining the heterogeneous electron transfer rate constant, k, have relied on the deliberate exposure of specific electrode regions or additional surface characterization to correlate proposed active sites to voltammetric features. Few studies have investigated the electrochemical activity of surface features of layered dichalcogenides under the same experimental conditions. Herein, MoS2 flakes with well-defined features were mapped using scanning electrochemical microscopy (SECM). At visually flat areas of MoS2, k of hexacyanoferrate(III) ([Fe(CN)6]3-) and hexacyanoferrate(II) ([Fe(CN)6]4-) was typically smaller and spanned a larger range than that of hexaammineruthenium(III) ([Ru(NH3)6]3+), congruent with the current literature. However, in contrast to previous studies, the reduction of [Fe(CN)6]3- and the oxidation of [Fe(CN)6]4- exhibited similar rate constants, attributed to the dominance of charge transfer through surface states. The comparison of SECM with optical and atomic force microscopy images revealed that while most of the flake was electroactive, edge sites associated with freshly exposed areas that include macrosteps consisting of several monolayers as well as recessed areas exhibited the highest reactivity, consistent with the reported results.

7.
Nano Lett ; 16(10): 6452-6459, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27635659

RESUMO

Electrodepositing low loadings of metallic nanoparticle catalysts onto the surface of semiconducting photoelectrodes is a highly attractive approach for decreasing catalyst costs and minimizing optical losses. However, securely anchoring nanoparticles to the photoelectrode surface can be challenging-especially if the surface is covered by a thin insulating overlayer. Herein, we report on Si-based photocathodes for the hydrogen evolution reaction that overcome this problem through the use of a 2-10 nm thick layer of silicon oxide (SiOx) that is deposited on top of Pt nanoparticle catalysts that were first electrodeposited on a 1.5 nm SiO2|p-Si(100) absorber layer. Such insulator-metal-insulator-semiconductor (IMIS) photoelectrodes exhibit superior durability and charge transfer properties compared to metal-insulator-semiconductor (MIS) control samples that lacked the secondary SiOx overlayer. Systematic investigation of the influence of particle loading, SiOx layer thickness, and illumination intensity suggests that the SiOx layer possesses moderate conductivity, thereby reducing charge transfer resistance associated with high local tunneling current densities between the p-Si and Pt nanoparticles. Importantly, the IMIS architecture is proven to be a highly effective approach for stabilizing electrocatalytic nanoparticles deposited on insulating overlayers without adversely affecting mass transport of reactant and product species associated with the hydrogen evolution reaction.

8.
Phys Chem Chem Phys ; 17(32): 20805-13, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26214401

RESUMO

The oxidation of small organic acids on noble metal surfaces under electrocatalytic conditions is important for the operation of fuel cells and is of scientific interest, but the basic reaction mechanisms continue to be a matter of debate. Formic acid oxidation on platinum is one of the simplest of these reactions, yet even this model system remains poorly understood. Historically, proposed mechanisms for the oxidation of formic acid involve the acid molecule as a reactant, but recent studies suggest that the formate anion is the reactant. Ab initio studies of this reaction do not address formate as a possible reactant, likely because of the difficulty of calculating a charged species near a charged solvated surface under potential control. Using the recently-developed joint density functional theory (JDFT) framework for electrochemistry, we perform ab initio calculations on a Pt(111) surface to explore this reaction and help resolve the debate. We find that when a formate anion approaches the platinum surface at typical operating voltages, with H pointing towards the surface, it reacts to form CO2 and adsorbed H with no barrier on a clean Pt surface. This mechanism leads to a reaction rate proportional to formate concentration and number of available platinum sites. Additionally, high coverages of adsorbates lead to large reaction barriers, and consequently, we expect the availability of metal sites to limit the experimentally observed reaction rate.

9.
Nat Mater ; 12(6): 562-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644521

RESUMO

Photoelectrochemical (PEC) water splitting represents a promising route for renewable production of hydrogen, but trade-offs between photoelectrode stability and efficiency have greatly limited the performance of PEC devices. In this work, we employ a metal-insulator-semiconductor (MIS) photoelectrode architecture that allows for stable and efficient water splitting using narrow bandgap semiconductors. Substantial improvement in the performance of Si-based MIS photocathodes is demonstrated through a combination of a high-quality thermal SiO2 layer and the use of bilayer metal catalysts. Scanning probe techniques were used to simultaneously map the photovoltaic and catalytic properties of the MIS surface and reveal the spillover-assisted evolution of hydrogen off the SiO2 surface and lateral photovoltage driven minority carrier transport over distances that can exceed 2 cm. The latter finding is explained by the photo- and electrolyte-induced formation of an inversion channel immediately beneath the SiO2/Si interface. These findings have important implications for further development of MIS photoelectrodes and offer the possibility of highly efficient PEC water splitting.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38711439

RESUMO

Electrochemical mass spectrometry (EC-MS) is combined with chronoamperometry to quantify H coverage associated with the surface hydride phase on Cu(111) in 0.1 mol/L H2SO4. A two-step potential pulse program is used to examine anion desorption and hydride formation, and the inverse, by tracking the 2 atomic mass unit (amu) signal for H2 production in comparison to the charge passed. On the negative potential step, the reduction current is partitioned between anion desorption, hydride formation, and the hydrogen evolution reaction (HER). For modest overpotentials, variations in partial processes are evident as inflections in the chronoamperometry and EC-MS signal. On the return step to positive potentials, hydride decomposition by H recombination to H2 occurs in parallel with sulfate adsorption. The challenge associated with the inherent diffusional delay in the EC-MS response is mitigated by total H2 collection and steady-state analysis facilitated by the thin-layer EC-MS cell geometry as demonstrated for the HER on a non-hydride forming Ag electrode. Analysis of the respective transients and steady-state response on Cu(111) reveals a saturated hydride fractional coverage of 0.67 at negative potentials with an upper bound charge of 106 µC/cm2 (average electrosorption valency of ≈1.76) associated with adsorption of the (√3×√7) mixed sulfate-water adlayer at positive potentials.

11.
J Phys Chem Lett ; 12(44): 10936-10941, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34734717

RESUMO

Mass spectrometry and Raman vibrational spectroscopy were used to follow competitive dynamics between adsorption and desorption of H and anions during potential cycling of three low-index Cu surfaces in acid electrolytes. Unique to Cu(111) is a redox wave for surface hydride formation coincident with anion desorption, while the reverse reaction of hydride decomposition with anion adsorption yields H2 by recombination rather than oxidation to H3O+. Charge imbalance between the reactions accounts for the asymmetric voltammetry in SO42-, ClO4-, PO43-, and Cl- electrolytes with pH 0.68-4.5. Two-dimensional hydride formation is evidenced by the reduction wave prior to H2 evolution and vibrational bands between 995 and 1130 cm-1. In contrast to Cu(111), no distinct voltammetric signature of surface hydride formation is observed on Cu(110) and Cu(100). The Cu(111) hydride surface phase may serve to catalyze hydrofunctionalization reactions such as CO2 reduction to CH4 and should be broadly useful in electro-organic synthesis.

12.
J Phys Chem Lett ; 12(1): 440-446, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356303

RESUMO

Potential-induced changes in charge and surface structure are significant drivers of the reactivity of electrochemical interfaces but are frequently difficult to decouple from the effects of surface solvation. Here, we consider the Cu(100) surface with a c(2 × 2)-Cl adlayer, a model surface with multiple geometry measurements under both ultrahigh vacuum and electrochemical conditions. Under aqueous electrochemical conditions, the measured Cu-Cl interplanar separation (dCu-Cl) increases by at least 0.3 Å relative to that under ultrahigh vacuum conditions. This large geometry change is unexpected for a hydrophobic surface, and it requires invoking a negative charge on the Cl-covered surface which is much greater than expected from the work function and our capacitance measurements. To resolve this inconsistency we employ ab initio calculations and find that the Cu-Cl separation increases with charging at a rate of 0.7 Å/e- per Cl atom. The larger Cu-Cl bond distance increases the surface dipole and, therefore, the work function of the interface, contributing to the negative charge under fixed potential electrochemical conditions. Interactions with water are not needed to explain either the large charge or large Cu-Cl interplanar spacing of this surface under electrochemical conditions.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34194601

RESUMO

Adsorbates impact the surface stability and reactivity of metallic electrodes, affecting the corrosion, dissolution, and deposition behavior. Here, we use density functional theory (DFT) and DFT-based Behler-Parrinello neural networks (BPNN) to investigate the geometries, surface formation energies, and atom removal energies of stepped and kinked surfaces vicinal to Cu(100) with a c(2×2) Cl adlayer. DFT calculations indicate that the stable structures for the adsorbate-free vicinal surfaces favor steps with <110> orientation, while the addition of the c(2×2) Cl adlayer leads to <100> step facets, in agreement with scanning tunneling microscopy (STM) observations. The BPNN calculations produce energies in good agreement with DFT results (root mean square error of 1.3 meV/atom for a randomly chosen set of structures excluded from the training set). We draw three conclusions from the BPNN calculations. First, Cl on the upper <100> step edges occupies the three fold hollow sites (as opposed to the four-fold sites on the terraces), congruent with deviations of the STM height profile for the adsorbate at the upper step edge. Second, disruptions in the continuity of the halide overlayer at the steps result in significant long-range step-step interactions. Third, anisotropic metal dissolution and deposition energetics arise from phase shifts of the c(2×2) adlayer at orthogonal <100> steps. This DFT-BPNN approach offers an effective strategy for tackling large-scale surface structure challenges with atomic-level accuracy.

14.
Chem Mater ; 5042020.
Artigo em Inglês | MEDLINE | ID: mdl-33311853

RESUMO

Self-terminated electrochemical deposition is used to grow Pt nanoparticles on tungsten monocarbide (WC) from a pH 4 electrolyte of 3 mmol/L K2PtCl4-0.5 mol/L NaCl. An unconventional potentiodynamic deposition program is used where nucleation is promoted at large overpotentials followed by growth termination at still larger overpotentials to yield a high coverage of Pt nanoparticles. Following three deposition cycles between -0.8 VSCE and -0.45 VSCE, the surface is covered by a monolayer equivalent charge of Pt in the form of ≈3 × 1011 particles/cm2 that are ≈6.7 ± 1.1 nm in diameter. The number and size of nanoparticles increase monotonically for five deposition cycles. Area-normalized kinetics for hydrogen evolution (HER) and oxidation (HOR) on Pt-WC were determined in 0.5 mol/L H2SO4. For the lowest surface coverage of Pt nanoparticles on WC, ≈ 0.01, an exchange current density of ≈ 100 mA/cm2 is achieved, comparable to the highest reported values for Pt nanoparticles and ultramicroelectrodes. The area normalized apparent exchange current density decreases with increasing Pt coverage as the relative contribution of point versus planar diffusion decreases. Self-terminated electrodeposition of Pt provides an attractive approach to achieving ultra-low loadings of well-dispersed Pt nanoparticles on a non-precious metal support like WC.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33042324

RESUMO

Surface-enhanced infrared absorption spectroscopy is used to examine the co-adsorption of a selection of polyethers with Cl- under conditions relevant to superconformal Cu electrodeposition in CuSO4-H2SO4 electrolytes. In 0.1 mol/L H2SO4, a potential-dependent mixed SO4 2--H3O+/H2O layer forms on weakly textured (111) Cu thin-film surfaces. With the addition of 1 mmol/L NaCl, the SO4 2--H3O+/H2O adlayer is displaced and rapidly replaced by an ordered halide layer that disrupts the adjacent solvent network, leading to an increase in non-hydrogen-bonded water that makes the interface more hydrophobic. The altered wetting behavior facilitates co-adsorption of polyethers, such as poly(ethylene glycols), polyoxamers, or polyoxamines. Interfacial water is displaced by co-adsorption of the hydrophobic polymer segments on the Cl--terminated surface, while the hydrophilic ether oxygens are available for hydrogen bond formation with the solvent. The combined polyether-Cl- layer serves as an effective suppressor of the Cu electrodeposition reaction by limiting access of Cuaq 2+ to the underlying metal surface. This insight differs from previous work which suggested that polymer adsorption is mediated by Cu+-ether binding.

16.
J Phys Chem C Nanomater Interfaces ; 120(48): 27478-27489, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-28217241

RESUMO

The interaction between electrodeposition of Ni and electrolyte breakdown, namely the hydrogen evolution reaction (HER) via H3O+ and H2O reduction, was investigated under well-defined mass transport conditions using ultramicroelectrodes (UME's) coupled with optical imaging, generation/collection scanning electrochemical microscopy (G/C-SECM), and preliminary microscale pH measurements. For 5 mmol/L NiCl2 + 0.1 mol/L NaCl, pH 3.0, electrolytes, the voltammetric current at modest overpotentials, i.e., between -0.6 V and -1.4 V vs. Ag/AgCl, was distributed between metal deposition and H3O+ reduction, with both reactions reaching mass transport limited current values. At more negative potentials, an unusual sharp current spike appeared upon the onset of H2O reduction that was accompanied by a transient increase in H2 production. The peak potential of the current spike was a function of both [Ni(H2O)6]2+(aq) concentration and pH. The sharp rise in current was ascribed to the onset of autocatalytic H2O reduction, where electrochemically generated OH- species induce heterogeneous nucleation of Ni(OH)2(ads) islands, the perimeter of which is reportedly active for H2O reduction. As the layer coalesces, further metal deposition is quenched while H2O reduction continues albeit at a decreased rate as fewer of the most reactive sites, e.g., Ni/Ni(OH)2 island edges, are available. At potentials below -1.5 V vs. Ag/AgCl, H2O reduction is accelerated, leading to homogeneous precipitation of bulk Ni(OH)2·xH2O within the nearly hemispherical diffusion layer of the UME.

17.
Science ; 338(6112): 1327-30, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23224552

RESUMO

A self-terminating rapid electrodeposition process for controlled growth of platinum (Pt) monolayer films from a K(2)PtCl(4)-NaCl electrolyte has been developed that is tantamount to wet atomic layer deposition. Despite the deposition overpotential being in excess of 1 volt, Pt deposition was quenched at potentials just negative of proton reduction by an alteration of the double-layer structure induced by a saturated surface coverage of underpotential deposited H (H(upd)). The surface was reactivated for further Pt deposition by stepping the potential to more positive values, where H(upd) is oxidized and fresh sites for the adsorption of PtCl(4)(2-) become available. Periodic pulsing of the potential enables sequential deposition of two-dimensional Pt layers to fabricate films of desired thickness, relevant to a range of advanced technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA