Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 55(4): 1161-1168, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34499791

RESUMO

BACKGROUND: Brain tissue hypoxia is a common consequence of traumatic brain injury (TBI) due to the rupture of blood vessels during impact and it correlates with poor outcome. The current magnetic resonance imaging (MRI) techniques are unable to provide a direct map of tissue hypoxia. PURPOSE: To investigate whether GdDO3NI, a nitroimidazole-based T1 MRI contrast agent allows imaging hypoxia in the injured brain after experimental TBI. STUDY TYPE: Prospective. ANIMAL MODEL: TBI-induced mice (controlled cortical impact model) were intravenously injected with either conventional T1 agent (gadoteridol) or GdDO3NI at 0.3 mmol/kg dose (n = 5 for each cohort) along with pimonidazole (60 mg/kg) at 1 hour postinjury and imaged for 3 hours following which they were euthanized. FIELD STRENGTH/SEQUENCE: 7 T/T2 -weighted spin echo and T1 -weighted gradient echo. ASSESSMENT: Injured animals were imaged with T2 -weighted spin-echo sequence to estimate the extent of the injury. The mice were then imaged precontrast and postcontrast using a T1 -weighted gradient-echo sequence for 3 hours postcontrast. Regions of interests were drawn on the brain injury region, the contralateral brain as well as on the cheek muscle region for comparison of contrast kinetics. Brains were harvested immediately post-imaging for immunohistochemical analysis. STATISTICAL TESTS: One-way analysis of variance and two-sample t-tests were performed with a P < 0.05 was considered statistically significant. RESULTS: GdDO3NI retention in the injury region at 2.5-3 hours post-injection was significantly higher compared to gadoteridol (mean retention fraction 63.95% ± 27.43% vs. 20.68% ± 7.43% for gadoteridol at 3 hours) while it rapidly cleared out of the muscle region. Pimonidazole staining confirmed the presence of hypoxia in both gadoteridol and GdDO3NI cohorts, and the later cohort showed good agreement with MRI contrast enhancement. DATA CONCLUSION: GdDO3NI was successfully shown to visualize hypoxia in the brain post-TBI using T1 -weighted MRI at 2.5-3 hours postcontrast. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Lesões Encefálicas , Imageamento por Ressonância Magnética , Animais , Meios de Contraste , Humanos , Hipóxia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Estudos Prospectivos
2.
Biomaterials ; 281: 121336, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35026670

RESUMO

Tissue engineering has enabled the development of advanced and physiologically relevant models of cardiovascular diseases, with advantages over conventional 2D in vitro assays. We have previously demonstrated development of a heart on-a-chip microfluidic model with mature 3D anisotropic tissue formation that incorporates both stem cell-derived cardiomyocytes and cardiac fibroblasts within a collagen-based hydrogel. Using this platform, we herein present a model of myocardial ischemia on-a-chip, that recapitulates ischemic insult through exposure of mature 3D cardiac tissues to hypoxic environments. We report extensive validation and molecular-level analyses of the model in its ability to recapitulate myocardial ischemia in response to hypoxia, demonstrating the 1) induction of tissue fibrosis through upregulation of contractile fibers, 2) dysregulation in tissue contraction through functional assessment, 3) upregulation of hypoxia-response genes and downregulation of contractile-specific genes through targeted qPCR, and 4) transcriptomic pathway regulation of hypoxic tissues. Further, we investigated the complex response of ischemic myocardial tissues to reperfusion, identifying 5) cell toxicity, 6) sustained contractile irregularities, as well as 7) re-establishment of lactate levels and 8) gene expression, in hypoxic tissues in response to ischemia reperfusion injury.


Assuntos
Dispositivos Lab-On-A-Chip , Isquemia Miocárdica , Humanos , Hipóxia/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA