Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Vet Res ; 19(1): 210, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848882

RESUMO

BACKGROUND: Beta-hemolytic streptococci involving the upper respiratory tract cause strangles and strangles-like diseases in horses and cause severe economic damage to the equestrian club each year. Therefore, careful epidemiological study of these bacteria, evaluation of phylogenetic connections and SeM-typing can be useful to determine the source and epidemiological characteristics of the disease outbreak. Isolates were analyzed using molecular and phylogenetic methods and to determine antibiotic resistance pattern in Iranian isolates. Molecular and phylogenetic methods were used to evaluate Iranian streptococcal isolates, and the similarity of the Iranian SeM-97 sequence with other alleles was assessed using the Neighbor-joining method with the Kimura 2 Parameter statistical model. The amino acid sequence of this gene was compared with the predicted SeM-3 reference amino acid sequence (FM204883) using MEGA 7 software. RESULTS: One type of SeM was found among streptococcal isolates. This type (SeM-97) was reported for the first time and was a new SeM. The relationship between streptococcal isolates and age, sex, race, clinical signs and geographical area was investigated. A significant relationship was observed between streptococcal isolates with age variables and clinical symptoms. CONCLUSIONS: In our study, a Streptococcus equi subsp. equi genotype was identified. The 97 allele of this gene has not been officially reported anywhere and is only registered in the Public databases for molecular typing and microbial genome diversity (PubMLST)-SeM database by Katy Webb. This was the first isolate reported and registered in the mentioned database. The isolate (Tabriz61) had the SeM-97 allele with clinical signs including mucopurulent discharge, abnormal sounds in lung hearing, warmth and enlargement or discharge and abscess of retropharyngeal lymph node and fever. This isolate was sensitive to penicillin, meropenem, ampicillin, cefotaxime, tetracycline, erythromycin, azithromycin, chloramphenicol, enrofloxacin and ciprofloxacin antibiotics and resistant to trimethoprim-sulfamethoxazole and gentamicin antibiotics.


Assuntos
Doenças dos Cavalos , Infecções Estreptocócicas , Streptococcus equi , Cavalos , Animais , Irã (Geográfico)/epidemiologia , Filogenia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Antibacterianos/farmacologia , Streptococcus equi/genética , Traqueia , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/microbiologia
2.
Ecotoxicol Environ Saf ; 267: 115619, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890246

RESUMO

Mercury (Hg) is a very toxic decomposition-resistant metal that can cause plant toxicity through bioaccumulation and oxidative damage. Biochar, derived from organic waste and agricultural garbage, is an on-site modification technique that can improve soil health in heavy metals-polluted regions. The present experiment was designed to explore the role of apple biochar in the management of mercury toxicity in corn (Zea mays cv. 'PL535'). Different levels of biochar derived from apple wood (0%, 2.5%, 5.0%, and 7.5% w/w) along with different Hg concentrations (0, 20, 40, and 60 mg/L) were used in the experiment that was based on a completely randomized design. Based on the results, HgCl2 at all rates reduced root and shoot dry weight and length, tolerance index, chlorophyll a and b content, the Hill reaction, and dissolved proteins and increased shoot and root Hg content (up to 72.57 and 717.56 times, respectively), cell death (up to 58.36%), MDA level (up to 47.82%), H2O2 (up to 66.33%), dissolved sugars, and proline. The results regarding enzymatic and non-enzymatic antioxidants revealed increases in total phenol and flavonoids content (up to 71.27% and 86.71%, respectively), DPPH free radical scavenging percentage, and catalase (CAT) and ascorbate peroxidase (APX) activity (up to 185.93% and 176.87%, respectively), in corn leaves with the increase in the Hg rate applied to the culture medium. The application of biochar to the substrate of the Hg-treated corns reduced Hg bioavailability, thereby reducing Hg accumulation in the roots (up to 76.88%) and shoots (up to 71.79%). It also reduced the adverse effect of Hg on the plants by increasing their shoot and root dry weight, photosynthesizing pigments, Hill reaction, and APX activity and reducing cell death, H2O2 content, and MDA content. The results reflected the capability of apple wood biochar at all rates in reducing Hg bioavailability and increasing Hg fixation in Hg-polluted soils. However, it was most effective at the rate of 7.5%.


Assuntos
Malus , Mercúrio , Zea mays , Antioxidantes , Clorofila A , Peróxido de Hidrogênio , Mercúrio/toxicidade , Madeira , Zea mays/efeitos dos fármacos
3.
BMC Microbiol ; 22(1): 261, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309645

RESUMO

PURPOSE: Nontuberculous mycobacteria (NTM) are ubiquitous bacteria that are naturally resistant to disinfectants and antibiotics and can colonize systems for supplying drinking water. Therefore, this study aimed to evaluate the prevalence of NTM in the drinking water of six hospitals in Tehran, Iran. METHODS: Totally, 198 water samples were collected. Each water sample was filtered via a membrane filter with a pore size of 0.45 µm and then decontaminated by 0.005% cetylpyridinium chloride. The membrane filters were incubated on two Lowenstein-Jensen media at 25 °C and 37 °C for 8 weeks. The positive cultures were identified with phenotypic tests, and then NTM species were detected according to the hsp65, rpoB, and 16S rDNA genes. Drug susceptibility testing (DST) was also carried out. RESULTS: Overall, 76 (40.4%) of the isolates were slowly growing mycobacteria (SGM) and 112 (59.6%) of the ones were rapidly growing mycobacteria (RGM). The most common NTM were Mycobacterium aurum, M. gordonae, M. phocaicum, M. mucogenicum, M. kansasii, M. simiae, M. gadium, M. lentiflavum, M. fortuitum, and M. porcinum. Among these 188 samples, NTM ranged from 1 to > 300 colony-forming unit (CFU) /500 mL, with a median of 182 CFU/500 mL. In the infectious department of all hospitals, the amount of CFU was higher than in other parts of the hospitals. The DST findings in this study indicated the diversity of resistance to different drugs. Among RGM, M. mucogenicum was the most susceptible isolate; however, M. fortuitum showed a different resistance pattern. Also, among SGM isolates, M. kansasii and M. simiae, the diversity of DST indicated. CONCLUSIONS: The current study showed NTM strains could be an important component of hospital water supplies and a possible source of nosocomial infections according to the CFU reported in this study. The obtained findings also help clarify the dynamics of NTM variety and distribution in the water systems of hospitals in the research area.


Assuntos
Água Potável , Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Humanos , Micobactérias não Tuberculosas , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Testes de Sensibilidade Microbiana , Irã (Geográfico)/epidemiologia , RNA Ribossômico 16S/genética , Mycobacterium tuberculosis/genética , Hospitais
4.
Ecotoxicol Environ Saf ; 248: 114320, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423373

RESUMO

Environmental stresses, including heavy metal pollution, are increasing at a growing rate and influencing arable lands. Chelators play an essential role in several biochemical pathways in the cells of plants treated with heavy metals. This research evaluated the modifying effect of malic acid (MA) and ethylenediaminetetraacetic acid (EDTA) on the physiological and biochemical parameters of okra plants exposed to Cd stress in which the okra plants were cultivated in hydroponic conditions. At the 4-leaf stage, they were applied with the treatments of cadmium nitrate at three levels (0, 50, and 100 mg/L), EDTA and MA at two levels (0.5 and 1 mM), and Cd + EDTA + MA at different rates for one month. The harvested plants were subjected to the measurement of the physico-biochemical factors. The results revealed that the application of Cd alone reduced leaf area (up to 21.57 %), and dissolved sugars (up to 40.51 % in the shoot and 45.19 % in the root) and increased MDA (up to 66.37 % and 76.43 % in the shoot and root, respectively), H2O2 (up to 67.14 % and 53.28 % in the shoot and root, respectively), proline (up to 52.04 % and 40.93 % in the shoot and root, respectively), and dissolved proteins (up to 14.59 % and 21.90 % in the shoot and root, respectively) contents in both shoots and roots whereas the application of MA and EDTA to the Cd-treated plants increased their leaf area and dissolved sugars and reduced MDA, H2O2, proline, and dissolved proteins content. The antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), were significantly higher in the plants treated with MA, EDTA, and Cd, but the application of MA and EDTA to the Cd-treated plants reduced the activity of all these antioxidant enzymes versus the plants only treated with Cd. MA and EDTA are likely to prevent the accumulation of Cd in the cytosol by binding to it and transferring it into vacuoles, thereby mitigating Cd toxicity in the okra plants.


Assuntos
Abelmoschus , Antioxidantes , Cádmio/toxicidade , Ácido Edético/farmacologia , Peróxido de Hidrogênio , Estresse Oxidativo , Prolina , Açúcares
5.
Ecotoxicol Environ Saf ; 208: 111607, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396127

RESUMO

The present study aimed to explore the effect of synthetic and naturally occurring chelators, EDTA and citric acid (CA), respectively, on changes in physiological and biochemical factors including cell death, level of mercury ions accumulation, malondialdehyde (MDA) content, total phenol and total flavonoids, anthocyanins and DPPH free radical scavenging activity, in the leaves of okra (Abelmoschus esculentus L.) plants exposed to mercury stress. In addition, polyphenolic compounds profile was assessed by high-performance liquid chromatography. The okras were planted in completely controlled hydroponic conditions (Hoagland solution). After they reached the four-leaf stage, they were treated simultaneously with different concentrations of HgCl2, EDTA and CA chelators, and their combination for one month. At the stage of maturity, the physiological and biochemical factors of the plant leaves were measured. The results showed that with the application of higher concentration of HgCl2, cell death, level of shoot and root Hg2+ content and root MDA, total phenols and total flavonoids, anthocyanin content, and DPPH free radical scavenging activity were increased. Also, the results indicated that okra plants have high biomass and a high rate of Hg mobilization and accumulation in the shoot versus the roots (TF=2.152 for the plants treated with 60 mg L-1 Hg2+), hence, can be considered as Hg hyperaccumulator plant for the phytoremediation of Hg-polluted soils and waters. In the Hg-treated plants changes in their phenolic profile were induced, and the increase of chlorogenic acid, rosmaric acid, apigenin, quercetin and rutin content was observed. The application of EDTA and CA improved the toxic effects of Hg2+, by modifying phenolic compounds, chelating Hg2+, and its proper compartmentation, while EDTA outperformed CA in this respect. Based on the results, it could be concluded that due to the high biomass and growth of okra in the presence of Hg2+, this plant is suitable for phytoremediation of soil and water contaminated with mercury. In addition, EDTA and CA can play a significant role in removing this toxic metal through transferring it from the culture medium to the plant.


Assuntos
Abelmoschus/efeitos dos fármacos , Ácido Cítrico/farmacologia , Ácido Edético/farmacologia , Mercúrio/toxicidade , Fenóis/metabolismo , Poluentes do Solo/toxicidade , Abelmoschus/crescimento & desenvolvimento , Abelmoschus/metabolismo , Fenômenos Bioquímicos/efeitos dos fármacos , Biodegradação Ambiental , Biomassa , Malondialdeído/metabolismo , Mercúrio/análise , Fenóis/análise , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Solo/química , Poluentes do Solo/análise
6.
Environ Sci Pollut Res Int ; 31(37): 49498-49513, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39078554

RESUMO

The issue of heavy metal pollution such as nickel poses a significant environmental concern, exerting detrimental effects on the growth and viability of plant life. Plants have various mechanisms to effectively manage heavy metal stress, including the ability to modify their amino acid type and content. This adaptive response allows plants to mitigate the detrimental effects caused by excessive heavy metal accumulation. The aim of this study was to investigate the effect of biofertilizers on nickel accumulation, nitrogen metabolism and amino acid profile of corn (Zea mays L.) cv. 'PL438' exposed to Ni stress. After disinfecting and soaking in water for 24 h, corn seeds were primed with bacterial biofertilizers (T2: NPK + FZ), fungal biofertilizers (T3: Arbuscular mycorrhizal fungi (AMF) + Trichoderma (T)), or a combination of them (T4: NPK + FZ + AMF + T) and were cultured by the hydroponic method in completely controlled conditions. Then, they were simultaneously exposed to nickel chloride at various rates (0, 75, or 150 µM) at the three-leaf stage. They were harvested two weeks later and were subjected to the measurement of Ni content, nitrate and nitrite content, nitrate reductase activity, and amino acid profile by high-performance liquid chromatography. The results showed that the application of Ni at higher rates increased Ni, nitrate, and nitrite contents and nitrate reductase activity. The study of Ni accumulation and TF revealed that Ni accumulated in the roots to a greater extent than in the shoots and TF was < 1 in all treatments. The shoot amino acid profile showed that the treatment of Ni+2 increased som amino acids such as aspartic acid, asparagine, serine, histidine, and glycine versus the control, whereas T4 Ni+2 increased aspartic acid, glutamic acid, threonine and arginine. The change in amino acids in Ni-treated plants may play a key role in their adaptation to Ni stress. The findings indicate that biofertilizers played a crucial role in mitigating the negative impacts of Ni on corn plants through alterations in amino acid composition and decreased absorption and translocation of Ni.


Assuntos
Aminoácidos , Fertilizantes , Níquel , Nitrogênio , Zea mays , Zea mays/metabolismo , Nitrogênio/metabolismo , Aminoácidos/metabolismo , Micorrizas , Poluentes do Solo/metabolismo
7.
Plants (Basel) ; 13(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38794402

RESUMO

Corn (Zea mays L.) is an important annual grain that is cultivated as a food staple around the world. The current study examined the effect of wastewater and a combination of biological and organic fertilizers on the morphological and phytochemical traits of corn, using a factorial experiment based on a randomized complete block design with three replications. The first factor was biological and organic fertilizers at seven levels, including the control (no fertilization), bacterial biological fertilizers (NPK) along with iron and zinc Barvar biofertilizers, fungal biofertilizers made from Mycorrhiza and Trichoderma, biochar, a combination of bacterial and fungal biofertilizers, and a combination of bacterial and fungal biofertilizers with biochar. The second factor was irrigation at two levels (conventional irrigation and irrigation with wastewater). The traits studied included the morphological yield, phenols, flavonoids, polyphenols, glomalin, cadmium content in plant parts, and translocation factor (TF). The results disclosed that the best treatment in regard to the morphological traits was related to conventional water + biochar + mycorrhiza + Trichoderma + NPK. The highest phenol and flavonoid content were observed when biochar + mycorrhiza + Trichoderma + NPK treatments were used in both water treatments. Also, the wastewater + biochar + mycorrhiza + Trichoderma + NPK treatment demonstrated the highest total glomalin and phenylalanine ammonia-lyase (PAL) activity. The obtained results demonstrate that combined biological and organic fertilizer use on corn plants can effectively alleviate the deleterious effects of cadmium present in wastewater.

8.
Sci Rep ; 14(1): 703, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184750

RESUMO

The serum level of C-reactive protein (CRP) is a significant independent risk factor for Coronavirus disease 2019 (COVID-19). A link was found between serum CRP and genetic diversity within the CRP gene in earlier research. This study examined whether CRP rs1205 and rs1800947 polymorphisms were associated with COVID-19 mortality among various severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) variants. We genotyped CRP rs1205 and rs1800947 polymorphisms in 2023 deceased and 2307 recovered patients using the polymerase chain reaction-restriction fragment length polymorphism method. There was a significant difference between the recovered and the deceased patients in terms of the minor allele frequency of CRP rs1205 T and rs1800947 G. In all three variants, COVID-19 mortality rates were associated with CRP rs1800947 GG genotype. Furthermore, CRP rs1205 CC and rs1800947 GG genotypes showed higher CRP levels. It was found that the G-T haplotype was prevalent in all SARS-CoV-2 variants. The C-C and C-T haplotypes were statistically significant in Delta and Omicron BA.5 variants, respectively. In conclusion, polymorphisms within the CRP gene may relate to serum CRP levels and mortality among COVID-19 patients. In order to verify the utility of CRP polymorphism correlation in predicting COVID-19 mortality, a replication of these results is needed.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Proteína C-Reativa/genética , Polimorfismo Genético
9.
Vet Med Sci ; 9(1): 144-149, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423204

RESUMO

BACKGROUND: Early detection of Rhodococcus equi pneumonia in foals is essential for horse health and for veterinarians. OBJECTIVES: This study aimed to demonstrate the usefulness of assessing the serum concentration of acute-phase proteins (APPs) in the early diagnosis of pneumonia. METHODS: The study evaluated APPs in 19 Arabian foals with R. equi pneumonia and compared them with 18 normal Arabian foals in equestrian clubs in Tabriz, Iran. Affected foals were identified through history, clinical findings and bacterial culture of tracheal washing. Biochemical methods and polymerase chain reaction tests were performed by examining the 16S rRNA and vapA genes to confirm the diagnosis of bacterial isolates. Blood samples were taken from all sick and healthy horses, and their serum was isolated. APPs in the serum were measured in all the samples. RESULTS: Rhodococcosis increased the serum concentration of haptoglobin (Hp) and serum amyloid A (SAA) (p < 0.001). The relationship between SAA and Hp was meaningful in the infected group (r = 0.933) but not in the healthy group. In cases where there are clinical findings of R. equi pneumonia, the concentration of SAA and Hp can help the effectiveness of treatment. - CONCLUSIONS: Serum concentration analysis of APPs can be helpful in early diagnosis and successfully treating foals with R. equi pneumonia.


Assuntos
Infecções por Actinomycetales , Doenças dos Cavalos , Pneumonia Bacteriana , Animais , Cavalos , Proteína Amiloide A Sérica/análise , Proteína Amiloide A Sérica/metabolismo , Proteínas de Fase Aguda , Haptoglobinas , Infecções por Actinomycetales/diagnóstico , Infecções por Actinomycetales/microbiologia , Infecções por Actinomycetales/veterinária , RNA Ribossômico 16S , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/veterinária , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/microbiologia
10.
Food Sci Nutr ; 11(10): 6670-6675, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823158

RESUMO

Cranberry offers numerous cardiovascular benefits. According to several studies, this fruit promotes the oxidation of low-density lipoprotein, enhances high-density lipoprotein, reduces platelet coagulation, and improves vascular activity. Albino male rats were divided into five groups (n = 5 per group). The control group received intraperitoneal administration of normal saline. The second group was injected with metaproterenol (MET) 3 days a week for 4 weeks. The third, fourth, and fifth groups were given cranberry extract in doses of 75, 100, and 150, respectively, along with heart-damaging drugs. Blood samples were collected and sent to the laboratory on the fourth weekend and 1 week after completing the injections in the fourth week (the sixth weekend) for analyzing serum factors such as cardiac creatine kinase MB, cardiac troponin I (cTnI), and aspartate aminotransferase (AST). The serum activity of the cardiac evaluation parameters in the fourth week demonstrated a highly significant correlation among the groups with respect to AST and cTnI (p < .001). Additionally, a significant relationship was observed between AST and cTnI within the target groups (p < .05). Ultimately, the findings indicated that the consumption of cranberry extract, due to its impact on heart function, could effectively modify serum indicators associated with heart damage. The utilized extract also exhibited efficacy, albeit with variable effects. Therefore, it is recommended to use cranberry extract synergistically with other chemical and herbal medications to achieve more sustained effects.

11.
Viral Immunol ; 36(10): 678-685, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029355

RESUMO

Coronavirus disease 2019 (COVID-19), the illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 and spread very quickly across the world. Different responses to infections have been related to fragment crystallizable gamma-receptor II alpha (FcγRIIA) polymorphisms. The purpose of this investigation was to determine if FCγRIIA rs1801274 polymorphism was related to COVID-19 mortality among different variants of SARS-CoV-2. The FCγRIIA rs1801274 polymorphism was genotyped using the polymerase chain reaction-restriction fragment length polymorphism technique in 1,734 recovered and 1,450 deceased patients. Deceased patients had significantly higher minor allele frequency of the FCγRIIA rs1801274 G allele than in the recovered cases. The COVID-19 mortality was associated with FCγRIIA rs1801274 GG and AG genotypes in the Delta variant and with FCγRIIA rs1801274 GG genotypes in the Alpha and Omicron BA.5 variants. The reverse transcription-quantitative polymerase chain reaction Ct values revealed statistically significant differences between individuals with a G allele and those with an A allele. In conclusion, among the several SARS-CoV-2 variants, there may be a correlation between the mortality rate of COVID-19 and the G allele of FCγRIIA rs1801274. To confirm our findings, thorough research is still required.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Alelos , COVID-19/genética , SARS-CoV-2/genética
12.
Plants (Basel) ; 12(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38140444

RESUMO

To investigate the influence of stress modulators on the adaptive physiological responses and biomass traits of oregano under water stress conditions, a two-year (2018 and 2019) randomized complete block-designed factorial research was performed. In this study, oregano plants were treated with five stress modulators levels (CHN: chitosan, AMA: amino acids, SEW: seaweed, ASA: ascorbic acid, SAA: salicylic acid, and CON: control) at three levels of irrigation regimes (Irr40 (40), Irr60 (60) and Irr75 (75) % field capacity). The effects of water shortage and biostimulant application were evaluated on total dry weight (TDW), relative water content (RWC), essential oil production, chlorophyll, nutrient (N, K, and P), proline, total soluble sugar, polyphenol and flavonoid content, and activity of antioxidant enzymes. The result showed that under optimal irrigation conditions, oregano plants sprayed with CHN exhibited the highest dry weight (141.23 g m-2) as a morphological trait, the highest relative water content (79.34%), the most consistent concentrations of nitrogen, phosphorus and potassium (3.14, 0.39, and 1.69%, respectively), chlorophylls a and b (3.02 and 1.95 mg g-1 FW, respectively), and total phenols and total flavonoids (30.72 and 3.17 mg g-1 DW, respectively). The water deficit increased the proline content, with the greatest amount (4.17 µg g-1 FW) observed in control plants. Moreover, under moisture shortage stress conditions, the application of CHN and SEW increased the soluble sugar (27.26 µmol g-1 FW) and essential oil yield (1.80%) production, the catalase, ascorbate peroxidase, and superoxide dismutase activities (3.17, 1.18, and 63.89 µmol min-1 g-1 FW, respectively) compared to control plants. In summary, the study demonstrated that oregano plants respond positively to stress modulator treatments when subjected to moisture shortage stress, especially when treated with chitosan. The results offer promising insights for developing sustainable adaptative strategies aimed at enhancing the oregano's tolerance to water shortage, ultimately improving its productivity and biochemical traits.

13.
Sci Rep ; 12(1): 3868, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264644

RESUMO

The contamination of urban soils with heavy elements due to the rapid development of urbanization and urban services has become a major environmental and human health challenge. This study provides insight into the urbanization controls on combined pollution severity and health risk potential of heavy metals in corn-cultivated urban versus non-urban soils. A multifaceted assessment was conducted using enrichment factor (EF), ecological risk (ER), bioconcentration factor (BCF), transmission factor (TF), hazard index (HI), and carcinogenic risk (CR). The results indicate a significant increase in the concentration of all metals in urban farmlands. When compared to the non-urban soils, EF implies a significant increase of all metals in the urban soil, downgrading this index from minimal enrichment (EF < 2) in the control soils to moderate enrichment (2 ≤ EF < 5) in the urban soils. Likewise, the average ER value showed an increase in the urban soils than in the control soils in the order of Fluvisols (66.6%) > Regosols (66.1%) > Cambisols (59.8%) > Calcisols (47%). The BCF and TF values for different elements decreased in the order of Cd (0.41-0.92) > Cu (0.1-0.23) > Zn (0.1-0.18) > Ni (0.01-0.03) > Pb (0.005-0.011) and Zn (0.75-0.94) > Cu (0.72-0.85) > Pb (0.09-0.63) > Cd (0.17-0.22) > Ni (0.01-0.21), respectively, which indicates that certain metals were not mobilized to the extent that they had been accumulated in the plant roots. The total carcinogenic risk was ranged from 5.88E-05 to 1.17E-04 for children and from 1.17E-04 to 2.30E-04 for adults, which implies a greater associated health risk for children.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Cádmio , Carcinógenos , Criança , China , Monitoramento Ambiental , Humanos , Chumbo , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Urbanização
14.
Sci Rep ; 12(1): 8676, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606506

RESUMO

Acanthamoeba polyphaga mimivirus (APMV), a species of amoeba-infecting giant viruses, has recently emerged as human respiratory pathogens. This study aimed to evaluate the presence of Mimivirus in respiratory samples, collected from tuberculosis (TB)-suspected patients. The study was performed on 10,166 clinical respiratory samples from April 2013 to December 2017. Mimivirus was detected using a suicide nested-polymerase chain reaction (PCR) and real-time PCR methods. Of 10,166 TB-suspected patients, 4 (0.04%) were positive for Mimivirus, including Mimivirus-53, Mimivirus-186, Mimivirus-1291, and Mimivirus-1922. Three out of four patients, hospitalized in the intensive care unit (ICU), were mechanically ventilated. All patients had an underlying disease, and the virus was detected in both sputum and bronchoalveolar lavage samples. In conclusion, Mimivirus was isolated from TB-suspected patients in a comprehensive study. The present results, similar to previous reports, showed that Mimiviruses could be related to pneumonia. Further studies in different parts of the world are needed to additional investigate the clinical importance of Mimivirus infection.


Assuntos
Amoeba , Vírus Gigantes , Mimiviridae , Tuberculose , Vírus de DNA , Humanos , Mimiviridae/genética , Tuberculose/diagnóstico
15.
Biol Trace Elem Res ; 200(1): 426-436, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33644828

RESUMO

Vegetables are important contributors to a healthy diet, and their adequate daily intake can help prevent some of the major illnesses. The aim of the study was to examine the content of the major and trace elements in selected organically grown (OG) and conventionally grown (CG) vegetables (cabbage, kohlrabi, Brussels sprout, beetroot, carrot, potato, and onion), taken from city green markets. Multi-elemental analysis was carried out by inductively coupled plasma method with optical emission spectrometry (ICP-OES). Nutritional quality evaluation in comparison to nutritional reference values was done. In studied vegetables, Al, Ca, K, Fe (with the exception of organic kohlrabi), Mg, Na, P, S, and Zn were quantified in all samples, whereas As, Cd, Co, Hg, Se, and V were below the limit of detection for these elements. Macroelements and trace elements were found at higher concentrations in OG and CG vegetables, respectively. Differences in concentrations of studied elements between the same vegetable species produced in two agricultural systems were significant, except for beetroot (p ≤ 0.05). Principal component analysis and hierarchical cluster analysis results showed that the botanical origin had higher influence on sample differentiation than the agronomic practice, which was in accordance with the results obtained by Mann-Whitney U test. Good quality of both OG and CG vegetables in respect of nutritionally beneficial elements was observed.


Assuntos
Brassica , Oligoelementos , Avaliação Nutricional , Análise Espectral , Oligoelementos/análise , Verduras
16.
Molecules ; 16(6): 4994-5007, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21694666

RESUMO

In the present study, two accessions of Centella asiatica (CA03 and CA23) were subjected to gamma radiation to examine the response of these accessions in terms of survival rate, flavonoid contents, leaf gas exchange and leaf mass. Radiation Sensitivity Tests revealed that based on the survival rate, the LD(50) (gamma doses that killed 50% of the plantlets) of the plantlets were achieved at 60 Gy for CA03 and 40 Gy for CA23. The nodal segments were irradiated with gamma rays at does of 30 and 40 Gy for Centella asiatica accession 'CA03' and 20 and 30 Gy for accession 'CA23. The nodal segment response to the radiation was evaluated by recording the flavonoid content, leaf gas exchange and leaf biomass. The experiment was designed as RCBD with five replications. Results demonstrated that the irradiated plantlets exhibited greater total flavonoid contents (in eight weeks) significantly than the control where the control also exhibited the highest total flavonoid contents in the sixth week of growth; 2.64 ± 0.02 mg/g DW in CA03 and 8.94 ± 0.04 mg/g DW in CA23. The total flavonoid content was found to be highest after eight weeks of growth, and this, accordingly, stands as the best time for leaf harvest. Biochemical differentiation based on total flavonoid content revealed that irradiated plantlets in CA23 at 20 and 30 Gy after eight weeks contained the highest total flavonoid concentrations (16.827 ± 0.02; 16.837 ± 0.008 mg/g DW, respectively) whereas in CA03 exposed to 30 and 40 Gy was found to have the lowest total flavonid content (5.83 ± 0.11; 5.75 ± 0.03 mg/g DW). Based on the results gathered in this study, significant differences were found between irradiated accessions and control ones in relation to the leaf gas. The highest PN and gs were detected in CA23 as control followed by CA23 irradiated to 20Gy (CA23G20) and CA23G30 and the lowest PN and gs were observed in CA03 irradiated to 40Gy (CA03G40). Moreover, there were no significant differences in terms of PN and gs among the irradiated plants in each accession. The WUE of both irradiated accessions of Centella asiatica were reduced as compared with the control plants (p < 0.01) while Ci and E were enhanced. There were no significant differences in the gas exchange parameters among radiated plants in each accession. Moreover, malondialdehyde (MDA) of accessions after gamma treatments were significantly higher than the control, however, flavonoids which were higher concentration in irradiated plants can scavenge surplus free radicals. Therefore, the findings of this study have proven an efficient method of in vitro mutagenesis through gamma radiation based on the pharmaceutical demand to create economically superior mutants of C. asiatica. In other words, the results of this study suggest that gamma irradiation on C. asiatica can produce mutants of agricultural and economical importance.


Assuntos
Centella/metabolismo , Centella/efeitos da radiação , Flavonoides/metabolismo , Raios gama/efeitos adversos , Biomassa , Centella/genética , Metabolismo dos Lipídeos/efeitos da radiação , Mutação/efeitos da radiação , Oxirredução/efeitos da radiação , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
17.
Molecules ; 16(11): 8930-44, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22027950

RESUMO

The study was couducted to investigate the effects of gamma irradiation and CO2 on flavonoid content and leaf gas exchange in C.asiatica. For flavonoid determination, the design was a split split plot based on Randomized Complete Block Design (RCBD). For other parameters, the designs were split plots. Statistical tests revealed significant differences in flavonoid contents of Centella asiatica leaves between different growth stages and various CO2 treatments. CO2 400, G20 (400 = ambient CO2; G20 = Plants exposed to 20 Gy) showed 82.90% higher total flavonoid content (TFC) in the 5th week than CO2 400 as control at its best harvest time (4th week). Increasing the concentration of CO2 from 400 to 800 µmol/mol had significant effects on TFC and harvesting time. In fact, 800 µmol/mol resulted in 171.1% and 66.62% increases in TFC for control and irradiated plants, respectively. Moreover, increasing CO2 concentration reduced the harvesting time to three and four weeks for control and irradiated plants, respectively. Enhancing CO2 to 800 µmol/mol resulted in a 193.30% (CO2 800) increase in leaf biomass compared to 400 µmol/mol and 226.34% enhancement in irradiated plants (CO2 800, G20) [800 = Ambient CO2; G20 = Plants exposed to 20 Gy] than CO2 400, G20. In addition, the CO2 800, G20 had the highest amount of flavonoid*biomass in the 4th week. The results of this study indicated that all elevated CO2 treatments had higher PN than the ambient ones. The findings showed that when CO2 level increased from 400 to 800 µmol/mol, stomatal conductance, leaf intercellular CO2 and transpiration rate had the tendency to decrease. However, water use efficiency increased in response to elevated CO2 concentration. Returning to the findings of this study, it is now possible to state that the proposed method (combined CO2 and gamma irradiation) has the potential to increase the product value by reducing the time to harvest, increasing the yield per unit area via boosting photosynthesis capacity, as well as increasing biochemicals (flavonoids) per gram DM.


Assuntos
Dióxido de Carbono/farmacologia , Centella , Flavonoides/metabolismo , Gases/metabolismo , Folhas de Planta , Animais , Biomassa , Centella/efeitos dos fármacos , Centella/metabolismo , Centella/efeitos da radiação , Ambiente Controlado , Humanos , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
18.
Molecules ; 16(11): 8981-91, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22439138

RESUMO

The present study investigates the effects of different concentrations, as well as type of plant growth regulators (PGRs) and medium (MS, Duchefa) on the growth and development of Centella asiatica in semi-solid culture. In addition, a protocol for successful sterilization of C.asiatica explants prepared from field-grown plants highly exposed to fungal and bacterial contamination was determined. Results for sterilization treatments revealed that applying HgCl2 and Plant Preservative Mixture (PPM) with cetrimide, bavistin and trimethoprim which were included after washing with tap water, followed by the addition of PPM in the medium, produced a very satisfactory result (clean culture 90 ± 1.33%) and TS5 (decon + cetrimide 1% + bavistin 150 mg/L + trimethoprim 50 mg/L + HgCl20.1% + PPM 2% soak and 2 mL/L in medium) was hence chosen as the best method of sterilization for C.asiatica. The synergistic combination of 6 benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) in concentrations of 2 mg/L and 0.1 mg/L, respectively, in Duchefa medium compared with MS induced the most optimal percentage of sprouted shoots (93 ± 0.667), number of shoots (5.2 ± 0.079) and nodes (4 ± 0.067) per explant, leaf per explant (14 ± 0.107) and shoot length (4.1 ± 0.67 cm). Furthermore, optimum rooting frequency (95.2 ± 0.81%), the number of roots/shoot (7.5 ± 0.107) and the mean root length (4.5 ± 0.133 cm) occurred for shoots that were cultured on full-strength MS medium containing 0.5 mg/L indole-3-butyric acid (IBA). In this study, the acclimatized plantlets were successfully established with almost 85% survival. The findings of this study have proven an efficient medium and PGR concentration for the mass propagation of C.asiatica. These findings would be useful in micropropagation and ex situ conservation of this plant.


Assuntos
Centella/crescimento & desenvolvimento , Centella/microbiologia , Antibacterianos/farmacologia , Benzimidazóis/farmacologia , Compostos de Benzil/farmacologia , Carbamatos/farmacologia , Fungicidas Industriais/farmacologia , Ácidos Naftalenoacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/microbiologia , Purinas/farmacologia , Solo , Trimetoprima/farmacologia
19.
Vet Res Forum ; 12(1): 133-135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953886

RESUMO

Congenital ichthyosis is a disease associated with hair loss and the presence of horny plates in the epidermis, covering the whole skin. The leading cause of the disease in humans and animals is genetic disorders, and they can be found in mild and severe forms. In June 2015, a newly born calf of the Holstein breed was referred to the Livestock Veterinary Hospital internal ward, Shabestar, Iran. The calf's clinical symptoms included maternal alopecia, thickening, and fissure over large areas of the body, tough skin with thick horny scales and deep crack, lack of flexibility in the body parts (gluteal, knee, and shoulder areas), ectropion, eclabium, and microtia. The blood samples were taken from the calf's jugular vein to measure the hematological and biochemical parameters. After euthanizing the calf, the skin of different body regions was sampled for histopathological examination of skin lesions. Based on the results, the amounts of plasma parameters such as urea, triglyceride, glucose, alanine transaminase, lactate dehydrogenase, phosphorus, and uric acid were increased. The leukocytosis and polycythemia were found in the hematology results, and histopathological analysis exhibited hypergranulosis and hyperkeratosis in the skin of affected areas. Ichthyosis is caused by the defect in the autosomal recessive gene and as an incurable disease; there is currently no cure for this deadly disease, and the livestock will be eliminated from the herd.

20.
Plants (Basel) ; 10(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34579314

RESUMO

Nowadays, the extract of seaweeds has drawn attention as a rich source of bioactive metabolites. Seaweeds are known for their biologically active compounds whose antibacterial and antifungal activities have been documented. This research aimed to study the profile of phenolic compounds using the HPLC method and determine biologically active compounds using the GC-MS method and the antifungal activity of Gracilariopsis persica against plant pathogenic fungi. G. persica was collected from its natural habitat in Suru of Bandar Abbas, Iran, dried, and extracted by methanol. The quantitative results on phenolic compounds using the HPLC method showed that the most abundant compounds in G. persica were rosmarinic acid (20.9 ± 0.41 mg/kg DW) and quercetin (11.21 ± 0.20 mg/kg DW), and the least abundant was cinnamic acid (1.4 ± 0.10 mg/kg DW). The GC-MS chromatography revealed 50 peaks in the methanolic extract of G. persica, implying 50 compounds. The most abundant components included cholest-5-en-3-ol (3 beta) (27.64%), palmitic acid (17.11%), heptadecane (7.71%), and palmitic acid methyl ester (6.66%). The antifungal activity of different concentrations of the extract was determined in vitro. The results as to the effect of the alga extract at the rates of 200, 400, 600, 800, and 1000 µL on the mycelial growth of four important plant pathogenic fungi, including Botrytis cinerea, Aspergillus niger, Penicillium expansum, and Pyricularia oryzae, revealed that the mycelial growth of all four fungi was lower at higher concentrations of the alga extract. However, the extract concentration of 1000 µL completely inhibited their mycelial growth. The antifungal activity of this alga may be related to the phenolic compounds, e.g., rosmarinic acid and quercetin, as well as compounds such as palmitic acid, oleic acid, and other components identified using the GC-MS method whose antifungal effects have already been confirmed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA