Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(6): e0057024, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809046

RESUMO

The complex interactions between bacterioplankton and phytoplankton have prompted numerous studies that investigate phytoplankton microbiomes with the aim of characterizing beneficial or opportunistic taxa and elucidating core bacterial members. Oftentimes, this knowledge is garnered through 16S rRNA gene profiling of microbiomes from phytoplankton isolated across spatial and temporal scales, yet these studies do not offer insight into microbiome assembly and structuring. In this study, we aimed to identify taxa central to structuring and establishing the microbiome of the ubiquitous diatom Asterionellopsis glacialis. We introduced a diverse environmental bacterial community to A. glacialis in nutrient-rich or nutrient-poor media in a continuous dilution culture setup and profiled the bacterial community over 7 days. 16S rRNA amplicon sequencing showed that cyanobacteria (Coleofasciculaceae) and Rhodobacteraceae dominate the microbiome early on and maintain a persistent association throughout the experiment. Differential abundance, co-abundance networks, and differential association analyses revealed that specific members of the family Rhodobacteraceae, particularly Sulfitobacter amplicon sequence variants, become integral members in microbiome assembly. In the presence of the diatom, Sulfitobacter species and other Rhodobacteraceae developed positive associations with taxa that are typically in high abundance in marine ecosystems (Pelagibacter and Synechococcus), leading to restructuring of the microbiome compared to diatom-free controls. These positive associations developed predominantly under oligotrophic conditions, highlighting the importance of investigating phytoplankton microbiomes in as close to natural conditions as possible to avoid biases that develop under routine laboratory conditions. These findings offer further insight into phytoplankton-bacteria interactions and illustrate the importance of Rhodobacteraceae, not merely as phytoplankton symbionts but as key taxa involved in microbiome assembly. IMPORTANCE: Most, if not all, microeukaryotic organisms harbor an associated microbial community, termed the microbiome. The microscale interactions that occur between these partners have global-scale consequences, influencing marine primary productivity, carbon cycling, and harmful algal blooms to name but a few. Over the last decade, there has been a growing interest in the study of phytoplankton microbiomes, particularly within the context of bloom dynamics. However, long-standing questions remain regarding the process of phytoplankton microbiome assembly. The significance of our research is to tease apart the mechanism of microbiome assembly with a particular focus on identifying bacterial taxa, which may not merely be symbionts but architects of the phytoplankton microbiome. Our results strengthen the understanding of the ecological mechanisms that underpin phytoplankton-bacteria interactions in order to accurately predict marine ecosystem responses to environmental perturbations.


Assuntos
Diatomáceas , Microbiota , RNA Ribossômico 16S , Rhodobacteraceae , Diatomáceas/microbiologia , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/classificação , Rhodobacteraceae/fisiologia , Rhodobacteraceae/isolamento & purificação , Fitoplâncton/microbiologia
2.
BMC Genomics ; 23(1): 413, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650521

RESUMO

BACKGROUND: Despite sexual development being ubiquitous to vertebrates, the molecular mechanisms underpinning this fundamental transition remain largely undocumented in many organisms. We designed a time course experiment that successfully sampled the period when Atlantic salmon commence their trajectory towards sexual maturation. RESULTS: Through deep RNA sequencing, we discovered key genes and pathways associated with maturation in the pituitary-ovarian axis. Analyzing DNA methylomes revealed a bias towards hypermethylation in ovary that implicated maturation-related genes. Co-analysis of DNA methylome and gene expression changes revealed chromatin remodeling genes and key transcription factors were both significantly hypermethylated and upregulated in the ovary during the onset of maturation. We also observed changes in chromatin state landscapes that were strongly correlated with fundamental remodeling of gene expression in liver. Finally, a multiomic integrated analysis revealed regulatory networks and identified hub genes including TRIM25 gene (encoding the estrogen-responsive finger protein) as a putative key regulator in the pituitary that underwent a 60-fold change in connectivity during the transition to maturation. CONCLUSION: The study successfully documented transcriptome and epigenome changes that involved key genes and pathways acting in the pituitary - ovarian axis. Using a Systems Biology approach, we identified hub genes and their associated networks deemed crucial for onset of maturation. The results provide a comprehensive view of the spatiotemporal changes involved in a complex trait and opens the door to future efforts aiming to manipulate puberty in an economically important aquaculture species.


Assuntos
Epigenoma , Transcriptoma , Animais , Feminino , Ovário/metabolismo , Análise de Sequência de RNA/métodos , Maturidade Sexual/genética
3.
BMC Biol ; 19(1): 73, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849527

RESUMO

BACKGROUND: Dinoflagellates in the family Symbiodiniaceae are important photosynthetic symbionts in cnidarians (such as corals) and other coral reef organisms. Breakdown of the coral-dinoflagellate symbiosis due to environmental stress (i.e. coral bleaching) can lead to coral death and the potential collapse of reef ecosystems. However, evolution of Symbiodiniaceae genomes, and its implications for the coral, is little understood. Genome sequences of Symbiodiniaceae remain scarce due in part to their large genome sizes (1-5 Gbp) and idiosyncratic genome features. RESULTS: Here, we present de novo genome assemblies of seven members of the genus Symbiodinium, of which two are free-living, one is an opportunistic symbiont, and the remainder are mutualistic symbionts. Integrating other available data, we compare 15 dinoflagellate genomes revealing high sequence and structural divergence. Divergence among some Symbiodinium isolates is comparable to that among distinct genera of Symbiodiniaceae. We also recovered hundreds of gene families specific to each lineage, many of which encode unknown functions. An in-depth comparison between the genomes of the symbiotic Symbiodinium tridacnidorum (isolated from a coral) and the free-living Symbiodinium natans reveals a greater prevalence of transposable elements, genetic duplication, structural rearrangements, and pseudogenisation in the symbiotic species. CONCLUSIONS: Our results underscore the potential impact of lifestyle on lineage-specific gene-function innovation, genome divergence, and the diversification of Symbiodinium and Symbiodiniaceae. The divergent features we report, and their putative causes, may also apply to other microbial eukaryotes that have undergone symbiotic phases in their evolutionary history.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Recifes de Corais , Dinoflagellida/genética , Ecossistema , Variação Genética , Genoma/genética
4.
BMC Biol ; 18(1): 56, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448240

RESUMO

BACKGROUND: Dinoflagellates are taxonomically diverse and ecologically important phytoplankton that are ubiquitously present in marine and freshwater environments. Mostly photosynthetic, dinoflagellates provide the basis of aquatic primary production; most taxa are free-living, while some can form symbiotic and parasitic associations with other organisms. However, knowledge of the molecular mechanisms that underpin the adaptation of these organisms to diverse ecological niches is limited by the scarce availability of genomic data, partly due to their large genome sizes estimated up to 250 Gbp. Currently available dinoflagellate genome data are restricted to Symbiodiniaceae (particularly symbionts of reef-building corals) and parasitic lineages, from taxa that have smaller genome size ranges, while genomic information from more diverse free-living species is still lacking. RESULTS: Here, we present two draft diploid genome assemblies of the free-living dinoflagellate Polarella glacialis, isolated from the Arctic and Antarctica. We found that about 68% of the genomes are composed of repetitive sequence, with long terminal repeats likely contributing to intra-species structural divergence and distinct genome sizes (3.0 and 2.7 Gbp). For each genome, guided using full-length transcriptome data, we predicted > 50,000 high-quality protein-coding genes, of which ~40% are in unidirectional gene clusters and ~25% comprise single exons. Multi-genome comparison unveiled genes specific to P. glacialis and a common, putatively bacterial origin of ice-binding domains in cold-adapted dinoflagellates. CONCLUSIONS: Our results elucidate how selection acts within the context of a complex genome structure to facilitate local adaptation. Because most dinoflagellate genes are constitutively expressed, Polarella glacialis has enhanced transcriptional responses via unidirectional, tandem duplication of single-exon genes that encode functions critical to survival in cold, low-light polar environments. These genomes provide a foundational reference for future research on dinoflagellate evolution.


Assuntos
Dinoflagellida/genética , Éxons , Genoma de Protozoário , Sequências de Repetição em Tandem , Transcriptoma , Adaptação Biológica , Genes de Protozoários
5.
Mol Ecol ; 29(20): 3921-3937, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32853430

RESUMO

Despite the ecological significance of the mutualistic relationship between Symbiodiniaceae and reef-building corals, the molecular interactions during establishment of this relationship are not well understood. This is particularly true of the transcriptional changes that occur in the symbiont. In the current study, a dual RNA-sequencing approach was used to better understand transcriptional changes on both sides of the coral-symbiont interaction during the colonization of Acropora tenuis by a compatible Symbiodiniaceae strain (Cladocopium goreaui; ITS2 type C1). Comparison of transcript levels of the in hospite symbiont 3, 12, 48 and 72 hr after exposure to those of the same strain in culture revealed that extensive and generalized down-regulation of symbiont gene expression occurred during the infection process. Included in this "symbiosis-derived transcriptional repression" were a range of stress response and immune-related genes. In contrast, a suite of symbiont genes implicated in metabolism was upregulated in the symbiotic state. The coral data support the hypothesis that immune-suppression and arrest of phagosome maturation play important roles during the establishment of compatible symbioses, and additionally imply the involvement of some SCRiP family members in the colonization process. Consistent with previous ecological studies, the transcriptomic data suggest that active translocation of metabolites to the host may begin early in the colonization process, and thus that the mutualistic relationship can be established at the larval stage. This dual RNA-sequencing study provides insights into the transcriptomic remodelling that occurs in C. goreaui during transition to a symbiotic lifestyle and the novel coral genes implicated in symbiosis.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Recifes de Corais , Dinoflagellida/genética , RNA , Simbiose/genética
6.
BMC Genomics ; 20(1): 139, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770720

RESUMO

BACKGROUND: A key developmental transformation in the life of all vertebrates is the transition to sexual maturity, whereby individuals are capable of reproducing for the first time. In the farming of Atlantic salmon, early maturation prior to harvest size has serious negative production impacts. RESULTS: We report genome wide association studies (GWAS) using fish measured for sexual maturation in freshwater or the marine environment. Genotypic data from a custom 50 K single nucleotide polymorphism (SNP) array was used to identify 13 significantly associated SNP for freshwater maturation with the most strongly associated on chromosomes 10 and 11. A higher number of associations (48) were detected for marine maturation, and the two peak loci were found to be the same for both traits. The number and broad distribution of GWAS hits confirmed a highly polygenetic nature, and GWAS performed separately within males and females revealed sex specific genetic behaviour for loci co-located with positional candidate genes phosphatidylinositol-binding clathrin assembly protein-like (picalm) and membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (magi2). CONCLUSIONS: The results extend earlier work and have implications for future applied breeding strategies to delay maturation in this important aquaculture species.


Assuntos
Pesqueiros , Herança Multifatorial , Salmo salar/genética , Maturidade Sexual/genética , Maturidade Sexual/fisiologia , Animais , Sequência de Bases , Cruzamento , Bases de Dados Genéticas , Feminino , Água Doce , Expressão Gênica , Frequência do Gene , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Guanilato Quinases/genética , Masculino , Proteínas Monoméricas de Montagem de Clatrina/genética , Polimorfismo de Nucleotídeo Único , Água do Mar , Fatores Sexuais , Tasmânia , Sequenciamento Completo do Genoma
7.
Nat Rev Microbiol ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438489

RESUMO

Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.

8.
Elife ; 122024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189382

RESUMO

Photosynthetic eukaryotes, such as microalgae and plants, foster fundamentally important relationships with their microbiome based on the reciprocal exchange of chemical currencies. Among these, the dicarboxylate metabolite azelaic acid (Aze) appears to play an important, but heterogeneous, role in modulating these microbiomes, as it is used as a carbon source for some heterotrophs but is toxic to others. However, the ability of Aze to promote or inhibit growth, as well as its uptake and assimilation mechanisms into bacterial cells are mostly unknown. Here, we use transcriptomics, transcriptional factor coexpression networks, uptake experiments, and metabolomics to unravel the uptake, catabolism, and toxicity of Aze on two microalgal-associated bacteria, Phycobacter and Alteromonas, whose growth is promoted or inhibited by Aze, respectively. We identify the first putative Aze transporter in bacteria, a 'C4-TRAP transporter', and show that Aze is assimilated through fatty acid degradation, with further catabolism occurring through the glyoxylate and butanoate metabolism pathways when used as a carbon source. Phycobacter took up Aze at an initial uptake rate of 3.8×10-9 nmol/cell/hr and utilized it as a carbon source in concentrations ranging from 10 µM to 1 mM, suggesting a broad range of acclimation to Aze availability. For growth-impeded bacteria, we infer that Aze inhibits the ribosome and/or protein synthesis and that a suite of efflux pumps is utilized to shuttle Aze outside the cytoplasm. We demonstrate that seawater amended with Aze becomes enriched in bacterial families that can catabolize Aze, which appears to be a different mechanism from that in soil, where modulation by the host plant is required. This study enhances our understanding of carbon cycling in the oceans and how microscale chemical interactions can structure marine microbial populations. In addition, our findings unravel the role of a key chemical currency in the modulation of eukaryote-microbiome interactions across diverse ecosystems.


Assuntos
Ácidos Dicarboxílicos , Ecossistema , Humanos , Transporte Biológico , Carbono
9.
Cell Metab ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959897

RESUMO

A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.

10.
FEMS Microbiol Rev ; 47(2)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36882224

RESUMO

Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/microbiologia , Antozoários/fisiologia , Bactérias/genética , Evolução Biológica , Simbiose
11.
Front Immunol ; 12: 672700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135900

RESUMO

Marine farmed Atlantic salmon (Salmo salar) are susceptible to recurrent amoebic gill disease (AGD) caused by the ectoparasite Neoparamoeba perurans over the growout production cycle. The parasite elicits a highly localized response within the gill epithelium resulting in multifocal mucoid patches at the site of parasite attachment. This host-parasite response drives a complex immune reaction, which remains poorly understood. To generate a model for host-parasite interaction during pathogenesis of AGD in Atlantic salmon the local (gill) and systemic transcriptomic response in the host, and the parasite during AGD pathogenesis was explored. A dual RNA-seq approach together with differential gene expression and system-wide statistical analyses of gene and transcription factor networks was employed. A multi-tissue transcriptomic data set was generated from the gill (including both lesioned and non-lesioned tissue), head kidney and spleen tissues naïve and AGD-affected Atlantic salmon sourced from an in vivo AGD challenge trial. Differential gene expression of the salmon host indicates local and systemic upregulation of defense and immune responses. Two transcription factors, znfOZF-like and znf70-like, and their associated gene networks significantly altered with disease state. The majority of genes in these networks are candidates for mediators of the immune response, cellular proliferation and invasion. These include Aurora kinase B-like, rho guanine nucleotide exchange factor 25-like and protein NDNF-like inhibited. Analysis of the N. perurans transcriptome during AGD pathology compared to in vitro cultured N. perurans trophozoites, as a proxy for wild type trophozoites, identified multiple gene candidates for virulence and indicates a potential master regulatory gene system analogous to the two-component PhoP/Q system. Candidate genes identified are associated with invasion of host tissue, evasion of host defense mechanisms and formation of the mucoid lesion. We generated a novel model for host-parasite interaction during AGD pathogenesis through integration of host and parasite functional profiles. Collectively, this dual transcriptomic study provides novel molecular insights into the pathology of AGD and provides alternative theories for future research in a step towards improved management of AGD.


Assuntos
Amebíase/imunologia , Doenças dos Peixes/imunologia , Interações Hospedeiro-Parasita/fisiologia , Salmo salar/parasitologia , Amebíase/genética , Animais , Doenças dos Peixes/genética , RNA-Seq , Salmo salar/imunologia , Transcriptoma
12.
Environ Microbiol Rep ; 12(4): 435-443, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32452166

RESUMO

Reef-building corals live in a mutualistic relationship with photosynthetic algae (family Symbiodiniaceae) that usually provide most of the energy required by the coral host. This relationship is sensitive to temperature stress; as little as a 1°C increase often leads to the collapse of the association. This sensitivity has led to an interest in the potential of more stress-tolerant algae to supplement or substitute for the normal Symbiodiniaceae mutualists. In this respect, the apicomplexan-like microalga Chromera is of particular interest due to its greater temperature tolerance. We generated a de novo transcriptome for a Chromera strain isolated from a GBR coral ('GBR Chromera') and compared with those of the reference strain of Chromera ('Sydney Chromera'), and to those of Symbiodiniaceae (Fugacium kawagutii, Cladocopium goreaui and Breviolum minutum), as well as the apicomplexan parasite, Plasmodium falciparum. In contrast to the high sequence divergence amongst representatives of different genera within the family Symbiodiniaceae, the two Chromera strains featured low sequence divergence at orthologous genes, implying that they are likely to be conspecifics. Although KEGG categories provide few criteria by which true coral mutualists might be identified, they do supply a molecular rationalization that explains the ecological dominance of Cladocopium spp. amongst Indo-Pacific reef corals. The presence of HSP20 genes may contribute to the high thermal tolerance of Chromera.


Assuntos
Alveolados/genética , Dinoflagellida/genética , Alveolados/parasitologia , Alveolados/fisiologia , Animais , Antozoários/genética , Antozoários/parasitologia , Antozoários/fisiologia , Recifes de Corais , Dinoflagellida/fisiologia , Fotossíntese , Simbiose , Transcriptoma
13.
Front Genet ; 9: 369, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271423

RESUMO

The availability of a reference genome assembly for Atlantic salmon, Salmo salar, SNP genotyping platforms and low cost sequencing are enhancing the understanding of both life history and production-related traits in this important commercial species. We collected and analyzed transcriptomes from selected tissues of Atlantic salmon to inform future functional and comparative genomics studies. Messenger RNA (mRNA) was isolated from pituitary gland, brain, ovary, and liver before Illumina sequencing produced a total of 640 million 150-bp paired-end reads. Following read mapping, feature counting, and normalization, cluster analysis identified genes highly expressed in a tissue-specific manner. We identified a cluster of 508 tissue specific genes for pituitary gland, 3395 for brain, 2939 for ovary, and 539 for liver. Functional profiling identified gene clusters describing the unique functions of each tissue. Moreover, highly-expressed transcription factors (TFs) present in each tissue-specific gene cluster were identified. TFs belonging to homeobox and bhlh families were identified for pituitary gland, pou and zf-c2h2 families for brain, arid, and zf-c2h2 for ovary and rxr-like family for liver. The data and analysis presented are relevant to the emerging Functional Annotation of All Salmonid Genomes (FAASG) initiative that is seeking to develop a detailed understanding of both salmonid evolution and the genomic elements that drive gene expression and regulation.

14.
ISME J ; 12(3): 776-790, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29321691

RESUMO

Since the discovery of Chromera velia as a novel coral-associated microalga, this organism has attracted interest because of its unique evolutionary position between the photosynthetic dinoflagellates and the parasitic apicomplexans. The nature of the relationship between Chromera and its coral host is controversial. Is it a mutualism, from which both participants benefit, a parasitic relationship, or a chance association? To better understand the interaction, larvae of the common Indo-Pacific reef-building coral Acropora digitifera were experimentally infected with Chromera, and the impact on the host transcriptome was assessed at 4, 12, and 48 h post-infection using Illumina RNA-Seq technology. The transcriptomic response of the coral to Chromera was complex and implies that host immunity is strongly suppressed, and both phagosome maturation and the apoptotic machinery is modified. These responses differ markedly from those described for infection with a competent strain of the coral mutualist Symbiodinium, instead resembling those of vertebrate hosts to parasites and/or pathogens such as Mycobacterium tuberculosis. Consistent with ecological studies suggesting that the association may be accidental, the transcriptional response of A. digitifera larvae leads us to conclude that Chromera could be a coral parasite, commensal, or accidental bystander, but certainly not a beneficial mutualist.


Assuntos
Alveolados/fisiologia , Antozoários/parasitologia , Simbiose , Alveolados/genética , Animais , Antozoários/genética , Antozoários/crescimento & desenvolvimento , Antozoários/fisiologia , Evolução Biológica , Recifes de Corais , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/parasitologia , Fotossíntese , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA