Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 36(3): e13873, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34865262

RESUMO

Tree diversity in Asia's tropical and subtropical forests is central to nature-based solutions. Species vulnerability to multiple threats, which affect provision of ecosystem services, is poorly understood. We conducted a region-wide, spatially explicit assessment of the vulnerability of 63 socioeconomically important tree species to overexploitation, fire, overgrazing, habitat conversion, and climate change. Trees were selected for assessment from national priority lists, and selections were validated by an expert network representing 20 countries. We used Maxent suitability modeling to predict species distribution ranges, freely accessible spatial data sets to map threat exposures, and functional traits to estimate threat sensitivities. Species-specific vulnerability maps were created as the product of exposure maps and sensitivity estimates. Based on vulnerability to current threats and climate change, we identified priority areas for conservation and restoration. Overall, 74% of the most important areas for conservation of these trees fell outside protected areas, and all species were severely threatened across an average of 47% of their native ranges. The most imminent threats were overexploitation and habitat conversion; populations were severely threatened by these factors in an average of 24% and 16% of their ranges, respectively. Our model predicted limited overall climate change impacts, although some study species were likely to lose over 15% of their habitat by 2050 due to climate change. We pinpointed specific natural areas in Borneo rain forests as hotspots for in situ conservation of forest genetic resources, more than 82% of which fell outside designated protected areas. We also identified degraded areas in Western Ghats, Indochina dry forests, and Sumatran rain forests as hotspots for restoration, where planting or assisted natural regeneration will help conserve these species, and croplands in southern India and Thailand as potentially important agroforestry options. Our results highlight the need for regionally coordinated action for effective conservation and restoration.


Especies de Árboles Valoradas y Amenazadas de Asia Tropical y Subtropical Resumen La diversidad de árboles en los bosques tropicales y subtropicales de Asia es un eje central para las soluciones basadas en la naturaleza. La vulnerabilidad de las especies ante las múltiples amenazas, las cuales afectan el suministro de servicios ambientales, es un tema poco comprendido. Realizamos una evaluación regional espacialmente explícita de la vulnerabilidad de 63 especies de árboles de importancia socioeconómica ante la sobreexplotación, incendios, sobrepastoreo, conversión del hábitat y cambio climático. Los árboles se seleccionaron para su evaluación a partir de listas nacionales de prioridades, y las selecciones fueron validadas por una red de expertos de 20 países. Usamos el modelado de idoneidad Maxent para predecir el rango de distribución de las especies, conjuntos de datos espaciales de libre acceso para mapear la exposición a las amenazas y rasgos funcionales para estimar la susceptibilidad a las amenazas. Con base en la vulnerabilidad a las amenazas actuales y al cambio climático, identificamos las áreas prioritarias para su conservación y restauración. En general, el 74% de las áreas más importantes para la conservación de estos árboles quedó fuera de las áreas protegidas y todas las especies estaban seriamente amenazadas en promedio en el 47% de su distribución nativa. Las amenazas más inminentes fueron la sobreexplotación y la conversión del hábitat; las poblaciones estuvieron seriamente amenazadas por estos factores en promedio en el 24% y 16% de su distribución, respectivamente. Nuestro modelo predijo un impacto general limitado del cambio climático, aunque algunas especies estudiadas tuvieron la probabilidad de perder más del 15% de su hábitat para el 2050 debido a este factor. Identificamos áreas naturales específicas en las selvas de Borneo como puntos calientes para la conservación in situ de los recursos genéticos forestales, más del 82% de los cuales estaban fuera de las áreas protegidas designadas. También identificamos áreas degradadas en los Ghats Occidentales, los bosques secos de Indochina y las selvas de Sumatra como puntos calientes para la restauración, en donde la siembra o la regeneración natural asistida ayudarán a conservar estas especies. Además, identificamos campos de cultivo al sur de India y Tailandia como potenciales opciones importantes de agrosilvicultura. Nuestros resultados resaltan la necesidad de acciones regionales coordinadas para la conservación y restauración efectivas.


Assuntos
Ecossistema , Árvores , Mudança Climática , Conservação dos Recursos Naturais , Florestas , Tailândia
2.
Int J Mol Sci ; 15(4): 6343-55, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24739807

RESUMO

Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd). The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium but were well expressed in the presence of iron (+Fe/+Cd). Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.


Assuntos
Cádmio/toxicidade , Fabaceae/efeitos dos fármacos , Ferro/farmacologia , Proteoma/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Fabaceae/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proteoma/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
World J Microbiol Biotechnol ; 30(9): 2427-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24840100

RESUMO

Aquilaria malaccensis produces agarwood in response to wounding and fungal attack. However, information is limited regarding Aquilaria's interaction with its diverse fungal community. In this study, time-related changes of three natural fungal colonizers in two wounded wild A. malaccensis were tracked, beginning a few hours after wounding up to 12 months. Using species-specific primers derived from their nrITS sequences in quantitative real-time PCR (qPCR), we quantified the amount of Cunninghamella bainieri, Fusarium solani and Lasiodiplodia theobromae. Because time is a major factor affecting agarwood quantity and quality, 14 wood samples were collected at different time points, i.e., 0-18 h, 2-13 days, 2-18 weeks, and 6-12 months after wounding. qPCR data revealed that the abundance of the three species decreased over time. The fungi were detected in high numbers during the first few hours and days after wounding (40- to 25,000-fold higher levels compared with initial counts) and in low numbers (<1- to 3,200-fold higher than initially) many months later. Consistent with its role in defense response, the accumulation of secondary metabolites at the wounding site could have caused the decline in fungal abundance. Succession patterns of the two trees were not identical, indicating that fungal populations may have been affected by tree environment and wound microclimate. Our results are important for understanding the diversity of microbial community in wild Aquilaria species and their association to wound-induced agarwood formation. Fungi could be secondary triggers to agarwood production in situations where trees are wounded in attempt to induce agarwood.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Cunninghamella/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Thymelaeaceae/microbiologia , Ascomicetos/isolamento & purificação , Biodiversidade , Cunninghamella/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
4.
Gene ; 921: 148539, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710292

RESUMO

The decline ofAcacia mangiumWilld. in Malaysia, especially in Sabah since 2010, is primarily due to Ceratocystiswilt and canker disease (CWCD) caused by theCeratocystis fimbriataEllis & Halst. complex. This study was aimed to investigate the mitochondrial genome architecture of two differentC. fimbriatacomplex isolates from Malaysia: one fromA. mangiumin Pahang (FRIM1162) and another fromEucalyptus pellitain Sarawak (FRIM1441). This research employed Next-Generation Sequencing (NGS) to contrast genomes from diverse hosts with nine additional mitochondrial sequences, identifying significant genetic diversity and mutational hotspots in the mitochondrial genome alignment. The mitochondrial genome-based phylogenetic analysis revealed a significant genetic relationship between the studied isolates and theC. fimbriatacomplex in the South American Subclade, indicating that theC. fimbriatacomplex discovered in Malaysia isC. manginecans. The comparative mitochondrial genome demonstrates the adaptability of the complex due to mobile genetic components and genomic rearrangements in the studiedfungal isolates. This research enhances our knowledge of the genetic diversity and evolutionary patterns within theC. fimbriatacomplex, aiding in a deeper understanding of fungal disease development and host adaption processes. The acquired insights are crucial for creating specific management strategies for CWCD, improving the overall understanding of fungal disease evolution and control.


Assuntos
Ascomicetos , Genoma Mitocondrial , Filogenia , Ascomicetos/genética , Variação Genética , Doenças das Plantas/microbiologia , Malásia , Sequenciamento de Nucleotídeos em Larga Escala , Genoma Fúngico
5.
3 Biotech ; 13(3): 78, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36761338

RESUMO

Members of Aquilaria Lam. (Thymelaeaceae) are evergreen trees that are widely distributed in the Indomalesia region. Aquilaria is highly prized for its unique scented resin, agarwood, which is often the subject of unlawful trade activities. Survival of the tree is heavily threatened by destructive harvesting and agarwood poaching, leading to its protection under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Unfortunately, an efficient species identification method, which is crucial to aid in the conservation efforts of Aquilaria is lacking. Here, we described our search for a suitable specific DNA barcode for Aquilaria species using eight complete plastome sequences. We identified five highly variable regions (HVR) (matK-rps16, ndhF-rpl32, psbJ-petA, trnD, and trnT-trnL) in the plastomes. These regions were further analyzed using the neighbor-joining (NJ) method to assess their ability at discriminating the eight species. Coupled with in silico primer design, two potential barcoding regions, psbJ-petA and trnT-trnL, were identified. Their strengths in species delimitation were evaluated individually and in combination, via DNA barcoding analysis. Our findings showed that the combined dataset, psbJ-petA + trnT-trnL, effectively resolved members of the genus Aquilaria by clustering all species into their respective clades. In addition, we demonstrated that the newly proposed DNA barcode was capable at identifying the species of origin of six commercial agarwood samples that were included as unknown samples. Such achievement offers a new technical advancement, useful in the combat against illicit agarwood trades and in assisting the conservation of these valuable species in natural populations. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03479-1.

6.
Plant J ; 62(4): 674-88, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20202169

RESUMO

Members of the CENTRORADIALIS (CEN)/TERMINAL FLOWER 1 (TFL1) subfamily control shoot meristem identity, and loss-of-function mutations in both monopodial and sympodial herbaceous plants result in dramatic changes in plant architecture. We studied the degree of conservation between herbaceous and woody perennial plants in shoot system regulation by overexpression and RNA interference (RNAi)-mediated suppression of poplar orthologs of CEN, and the related gene MOTHER OF FT AND TFL 1 (MFT). Field study of transgenic poplars (Populus spp.) for over 6 years showed that downregulation of PopCEN1 and its close paralog, PopCEN2, accelerated the onset of mature tree characteristics, including age of first flowering, number of inflorescences and proportion of short shoots. Surprisingly, terminal vegetative meristems remained indeterminate in PopCEN1-RNAi trees, suggesting the possibility that florigen signals are transported to axillary mersitems rather than the shoot apex. However, the axillary inflorescences (catkins) of PopCEN1-RNAi trees contained fewer flowers than did wild-type catkins, suggesting a possible role in maintaining the indeterminacy of the inflorescence apex. Expression of PopCEN1 was significantly correlated with delayed spring bud flush in multiple years, and in controlled environment experiments, 35S::PopCEN1 and RNAi transgenics required different chilling times to release dormancy. Considered together, these results indicate that PopCEN1/PopCEN2 help to integrate shoot developmental transitions that recur during each seasonal cycle with the age-related changes that occur over years of growth.


Assuntos
Inflorescência/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Populus/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Interferência de RNA , RNA de Plantas/genética , Análise de Sequência de DNA
7.
Biology (Basel) ; 10(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806225

RESUMO

Metarhizium anisopliae (Metchnikoff) Sorokin, a pathogenic fungus to insects, infects the subterranean termite, Coptotermes curvignathus Holmgren, a devastating pest of plantation trees in the tropics. Electron microscopy and proteomics were used to investigate the infection and developmental process of M. anisopliae in C. curvignathus. Fungal infection was initiated by germ tube penetration through the host's cuticle as observed at 6 h post-inoculation (PI), after which it elongated into the host's integumental tissue. The colonization process continued as seen from dissemination of blastospores in the hemocoel at 96 h PI. At this time point, the emergent mycelia had mummified the host and forty-eight hours later, new conidia were dispersed on the termites' body surface. Meanwhile, hyphal bodies were observed in abundance in the intercellular space in the host's body. The proteomes of the pathogen and host were isolated separately using inoculated termite samples withdrawn at each PI-time point and analyzed in two-dimensional electrophoresis (2-DE) gels. Proteins expressed in termites showed evidence of being related to cell regulation and the immune response, while those expressed in M. anisopliae, to transportation and fungal virulence. This study provides new information on the interaction between termites and its entomopathogen, with potential utilization for developing future biopesticide to control the termite population.

8.
Mitochondrial DNA B Resour ; 6(6): 1699-1701, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34104743

RESUMO

Gyrinops walla is an important agarwood-producing tree and threatened species from Sri Lanka. Herein, we assembled and characterized the complete chloroplast (cp) genome of G. walla as a genomic resource for conservation purposes. The 175,130 bp long genome is comprised of 87,376 bp large single-copy (LSC) and 3316 bp small single-copy (SSC) regions, which are separated by two inverted repeat (IR) region, each with a size of 42,291 bp. A total of 140 genes were predicted for the cp genome, which includes 94 protein-coding, 38 tRNA, and eight rRNA genes. Phylogenetic analysis showed that G. walla is fully resolved in a sister position to Aquilaria in the family Thymelaeaceae. The data provided will be useful for study on the molecular phylogenetics and evolution of Thymelaeaceae in the future.

9.
3 Biotech ; 10(3): 103, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32099744

RESUMO

Tree species in the Aquilarieae tribe of the Thymelaeaceae family produce agarwood, a natural product highly valued for its fragrance, but the species are under threat due to indiscriminate harvesting. For conservation of these species, molecular techniques such as DNA profiling have been used. In this study, we assessed cross-amplification of microsatellite markers, initially developed for three Aquilaria species (A. crassna, A. malaccensis, and A. sinensis), on ten other agarwood-producing species, including members of Aquilaria (A. beccariana, A. hirta, A. microcarpa, A. rostrata, A. rugosa, A. subintegra, and A. yunnanensis) and Gyrinops (G. caudata, G. versteegii, and G. walla), both from the Aquilarieae tribe. Primers for 18 out of the 30 microsatellite markers successfully amplified bands of expected sizes in 1 sample each of at least 10 species. These were further used to genotype 74 individuals representing all the 13 studied species, yielding 13 cross-amplifiable markers, of which only 1 being polymorphic across all species. At each locus, the number of alleles ranged from 7 to 23, indicating a rather high variability. Four markers had relatively high species discrimination power. Our results demonstrated that genetic fingerprinting can be an effective tool in helping to manage agarwood genetic resources by potentially supporting the chain-of-custody of agarwood and its products in the market.

10.
Sci Rep ; 10(1): 13034, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747724

RESUMO

Aquilaria tree species are naturally distributed in the Indomalesian region and are protected against over-exploitation. They produce a fragrant non-timber product of high economic value, agarwood. Ambiguous species delimitation and limited genetic information within Aquilaria are among the impediments to conservation efforts. In this study, we conducted comparative analysis on eight Aquilaria species complete chloroplast (cp) genomes, of which seven were newly sequenced using Illumina HiSeq X Ten platform followed by de novo assembly. Aquilaria cp genomes possess a typical quadripartite structure including gene order and genomic structure. The length of each of the cp genome is about 174 kbp and encoded between 89 and 92 proteins, 38 tRNAs, and 8 rRNAs, with 27 duplicated in the IR (inverted repeat) region. Besides, 832 repeats (forward, reverse, palindrome and complement repeats) and nine highly variable regions were also identified. The phylogenetic analysis suggests that the topology structure of Aquilaria cp genomes were well presented with strong support values based on the cp genomes data set and matches their geographic distribution pattern. In summary, the complete cp genomes will facilitate development of species-specific molecular tools to discriminate Aquilaria species and resolve the evolutionary relationships of members of the Thymelaeaceae family.


Assuntos
Genoma de Cloroplastos , Filogenia , Thymelaeaceae/classificação , Thymelaeaceae/genética , Composição de Bases/genética , Sequência de Bases , Sequências Repetidas Invertidas/genética , Anotação de Sequência Molecular , Nucleotídeos/genética , Análise de Sequência de DNA , Especificidade da Espécie
11.
Mitochondrial DNA B Resour ; 4(1): 19-20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33365402

RESUMO

Known for its durable timber quality, Neobalanocarpus heimii (King) Ashton is a highly sought after tree species endemic to the Malay Peninsula. Due to its scarcity and high value, the tree is classified under the IUCN Red List categories of Vulnerable. In this study, we assembled the complete chloroplast (cp) genome of N. heimii using data from high-throughput Illumina sequencing. The Chengal cp genome is 151,191 bp in size and includes two inverted repeat regions of 23,721 bp each, which is separated by a large single copy region of 83,801 bp and a small single copy region of 19,948 bp. A total of 130 genes were predicted, including 37 tRNA, 8 rRNA, and 85 protein-coding genes. Phylogenetic analysis placed N. heimii within the order Malvales.

12.
Waste Manag ; 100: 128-137, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31536923

RESUMO

Oil palm empty fruit bunch (EFB) is the most significant waste generated from the agricultural industry in Malaysia. Composting is one of the potential approaches to utilize EFB. However, composting of EFB is a time-consuming process, thus impractical for industrial application. The composting process can be shortened by introducing competent fungi into an optimal EFB composting system. This study was conducted to isolate and identify competent fungi that can naturally compost EFB. Samplings were carried out at eight different time points over a 20-weeks experimental period. The physical properties of EFB samples such as pH, residual oil content, and moisture content were measured and the EFB composting process that was indicated by the contents of cellulose, hemicellulose, and lignin were assessed. The fungal growth, distribution, and lignocellulolytic enzyme activities were evaluated. The results indicated that the changes in physical properties of EFB were correlated to the fungal growth. The gradual reduction in moisture content and residual oil, and the increment in pH values in EFB samples throughout the experimental period resulted in reduced fungal growth and diversity. Such phenomenon delayed EFB composting process as revealed by the changes in EFB lignin, hemicellulose, and cellulose contents. The most dominant and resilient fungi (Lichtheimia ramosa and Neurospora crassa) survived up to 16 weeks and were capable of producing various lignocellulolytic enzymes. Further understanding of these factors that would contribute to effective EFB composting could be useful for future industrial applications.


Assuntos
Compostagem , Frutas , Fungos , Malásia , Óleo de Palmeira
13.
RSC Adv ; 9(32): 18383-18393, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35515211

RESUMO

Mechanical wounding is the major trigger for the formation of agarwood in the tropical tree taxon Aquilaria. To understand the molecular mechanism by which Aquilaria reacts to wounding, we applied a proteomics approach using liquid chromatography electrospray-ionization coupled with tandem mass spectrometry (LC-MS/MS) coupled with bioinformatics analysis and principal component analysis. Protein samples were extracted from wood tissues collected from drilled wounds on the stems of five-year old Aquilaria malaccensis. Samples were collected at different time-points of 0, 2, 6, 12, and 24 h after mechanical wounding for protein identification. Venn diagram analysis showed that 564 out of 2227 identified proteins were time-point specific proteins. GO analysis using the REViGO software (including functional proteins) supported these findings. In total, 20 wound-response proteins and one unknown protein were identified as having important roles in the signaling response to wounding, response to stress, activation of plant defense systems, and plant regeneration. The detected biological processes include brassinosteroid stimulus, polyamine catabolism, hypersensitive response, response to cadmium ions, response to oxidative stress, and malate metabolism, suggesting that the wounded trees must have undergone major plant cell damage. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that several wound-response proteins were involved in agarwood formation. Our proteomics data thus provide useful information for understanding the wound response mechanisms that trigger agarwood formation.

14.
Trop Life Sci Res ; 29(2): 13-28, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30112138

RESUMO

Indonesia is home to several tree taxa that are harvested for agarwood. This highly valuable oleoresin ironically was the cause for some species to become vulnerable due to gluttonous human activity. However, information on the genetic diversity of these endangered trees is limited. In this study, 28 specimens representing eight species from two genera, Aquilaria and Gyrinops, were collected from ex-situ and in-situ populations in Indonesia. Phylogenetic analysis conducted on DNA sequences of the nuclear ribosomal internal transcribed spacer (ITS) and the trnL-trnF intergenic spacer regions, revealed that Aquilaria and Gyrinops are paraphyletic when Aquilaria cumingiana is excluded. The phylogenetic analysis for ITS and trnL-trnF showed capability to categorise agarwood-producing species based on their regions: East Indonesia and West Indonesia, using Wallace's Line as the divider. In addition, we discuss challenges in species identification and taxonomy of agarwood-producing genera, and their conservation efforts in Indonesia.

15.
Mitochondrial DNA B Resour ; 3(2): 1120-1121, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33474439

RESUMO

Known for its valuable agarwood, Aquilaria malaccensis Lam. is an evergreen tropical forest tree species endemic to the Indo-malesian region. Indiscriminate damaging and harvesting of the trees in the wild have resulted in it being listed in the CITES Appendix II for controlled trade and in the IUCN Red List as 'Vulnerable (VU)'. In this study, the complete chloroplast genome of A. malaccensis was assembled using data from high-throughput Illumina sequencing. The chloroplast genome was 174,832 bp in size, which included two inverted repeat regions of 42,091 bp each, separated by a large single copy region of 87,302 bp and a small single copy region of 3,348 bp. A total of 139 genes were predicted, including 39 tRNA, 8 rRNA, and 92 protein-coding genes. Phylogenetic analysis placed A. malaccensis within the family Thymelaeaceae. The chloroplast genome sequence of A. malaccensis offers a useful resource for future studies on the taxonomy and conservation of the threatened Aquilaria trees.

16.
Front Plant Sci ; 9: 712, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896211

RESUMO

The tribe Aquilarieae of the family Thymelaeaceae consists of two genera, Aquilaria and Gyrinops, with a total of 30 species, distributed from northeast India, through southeast Asia and the south of China, to Papua New Guinea. They are an important botanical resource for fragrant agarwood, a prized product derived from injured or infected stems of these species. The aim of this study was to estimate the genome size of selected Aquilaria species and comprehend the evolutionary history of Aquilarieae speciation through molecular phylogeny. Five non-coding chloroplast DNA regions and a nuclear region were sequenced from 12 Aquilaria and three Gyrinops species. Phylogenetic trees constructed using combined chloroplast DNA sequences revealed relationships of the studied 15 members in Aquilarieae, while nuclear ribosomal DNA internal transcribed spacer (ITS) sequences showed a paraphyletic relationship between Aquilaria species from Indochina and Malesian. We exposed, for the first time, the estimated divergence time for Aquilarieae speciation, which was speculated to happen during the Miocene Epoch. The ancestral split and biogeographic pattern of studied species were discussed. Results showed no large variation in the 2C-values for the five Aquilaria species (1.35-2.23 pg). Further investigation into the genome size may provide additional information regarding ancestral traits and its evolution history.

17.
Front Microbiol ; 9: 1707, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090097

RESUMO

Rhizophora mucronata is an important ecosystem entity of the Malaysian mangrove forest. Since the species grows in a harsh environment, any organism that is isolated from this species would be of huge interest due to its potential in having novel bioactive compounds. In the present work, we isolated, identified and characterized, a total of 78 fungal isolates harboring inside the leaf tissues of R. mucronata. Molecular identification using the nuclear ribosomal DNA internal transcribe spacer (ITS) sequences returned with high similarity matches to known sequences in the GenBank. Maximum likelihood analysis revealed the phylogenetic relationship of all isolates from this study. Most of the dominating fungal endophytes were from the genera Pestalotiopsis, followed by Alternaria and Cladosporium. Six isolates representing the genera Alternaria, Fusarium, Nigrospora, Pestalotiopsis, Phoma, and Xylaria, were further screened for their antagonism activities. Dual culture test assay revealed their inhibition percentages against the phytopathogenic fungus Fusarium solani between 45-66%, and 0.8-23% when using non-volatile test assay. Of the six isolates, only Fusarium lateritium and Xylaria sp. showed antibacterial activities against the pathogenic bacteria, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, with the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) ranging from 0.5 to 2 mg/mL. The DPPH radical scavenging assay recorded a high level of antioxidant activity in Xylaria sp., 3-fold above that of F. lateritium. We demonstrate for the first time, two members belonging to the endophytic fungal community in the tropical mangrove species that have potential use as antagonists and antibacterial agents for future biotechnological applications.

18.
Protoplasma ; 253(5): 1197-209, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26364028

RESUMO

Cytochrome P450s constitute the largest family of enzymatic proteins in plants acting on various endogenous and xenobiotic molecules. They are monooxygenases that insert one oxygen atom into inert hydrophobic molecules to make them more reactive and hydro-soluble. Besides for physiological functions, the extremely versatile cytochrome P450 biocatalysts are highly demanded in the fields of biotechnology, medicine, and phytoremediation. The nature of reactions catalyzed by P450s is irreversible, which makes these enzymes attractions in the evolution of plant metabolic pathways. P450s are prime targets in metabolic engineering approaches for improving plant defense against insects and pathogens and for production of secondary metabolites such as the anti-neoplastic drugs taxol or indole alkaloids. The emerging examples of P450 involvement in natural product synthesis in traditional medicinal plant species are becoming increasingly interesting, as they provide new alternatives to modern medicines. In view of the divergent roles of P450s, we review their classification and nomenclature, functions and evolution, role in biosynthesis of secondary metabolites, and use as tools in pharmacology.


Assuntos
Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/metabolismo , Oryza/metabolismo , Preparações de Plantas/uso terapêutico , Terpenos/metabolismo , Biodegradação Ambiental , Produtos Biológicos
20.
PLoS One ; 11(4): e0154631, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27128309

RESUMO

The identification of Aquilaria species from their resinous non-wood product, the agarwood, is challenging as conventional techniques alone are unable to ascertain the species origin. Aquilaria is a highly protected species due to the excessive exploitation of its precious agarwood. Here, we applied the DNA barcoding technique to generate barcode sequences for Aquilaria species and later applied the barcodes to identify the source species of agarwood found in the market. We developed a reference DNA barcode library using eight candidate barcode loci (matK, rbcL, rpoB, rpoC1, psbA-trnH, trnL-trnF, ITS, and ITS2) amplified from 24 leaf accessions of seven Aquilaria species obtained from living trees. Our results indicated that all single barcodes can be easily amplified and sequenced with the selected primers. The combination of trnL-trnF+ITS and trnL-trnF+ITS2 yielded the greatest species resolution using the least number of loci combination, while matK+trnL-trnF+ITS showed potential in detecting the geographical origins of Aquilaria species. We propose trnL-trnF+ITS2 as the best candidate barcode for Aquilaria as ITS2 has a shorter sequence length compared to ITS, which eases PCR amplification especially when using degraded DNA samples such as those extracted from processed agarwood products. A blind test conducted on eight agarwood samples in different forms using the proposed barcode combination proved successful in their identification up to the species level. Such potential of DNA barcoding in identifying the source species of agarwood will contribute to the international timber trade control, by providing an effective method for species identification and product authentication.


Assuntos
Código de Barras de DNA Taxonômico , DNA de Plantas/genética , Thymelaeaceae/classificação , Thymelaeaceae/genética , Sequência de Bases , Primers do DNA/genética , Espécies em Perigo de Extinção , Genes de Plantas , Variação Genética , Malásia , Filogenia , Reação em Cadeia da Polimerase , Especificidade da Espécie , Árvores/classificação , Árvores/genética , Madeira/classificação , Madeira/economia , Madeira/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA