Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34312225

RESUMO

Localized carbon reduction strategies are especially critical in states and regions that lack top-down climate leadership. This paper illustrates the use of coupled systems in assessments of subnational climate solutions with a case study of Georgia, a state located in the southeastern United States that does not have statewide climate goals or plans. The paper illustrates how robust place-specific plans for climate action could be derived from foundational global and national work and by embedding that research into the context of socio-ecological-technological systems. Our replicable methodology advances the traditional additive sectoral wedge analysis of carbon abatement potential by incorporating solution interdependencies and by spanning both carbon sources and sinks. We estimate that a system of 20 solutions could cut Georgia's carbon footprint by 35% in 2030 relative to a business-as-usual forecast and by 50% relative to Georgia's emissions in 2005. We also produce a carbon abatement cost curve that aligns private and social costs as well as benefits with units of avoided CO2-e. The solutions are affiliated with various social co-costs and co-benefits that highlight societal concerns extending beyond climate impacts, including public health, environmental quality, employment, and equity.

2.
Ecology ; 102(11): e03484, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289121

RESUMO

Standing dead trees (snags) decompose more slowly than downed dead wood and provide critical habitat for many species. The rate at which snags fall therefore influences forest carbon dynamics and biodiversity. Fall rates correlate strongly with mean annual temperature, presumably because warmer climates facilitate faster wood decomposition and hence degradation of the structural stability of standing wood. These faster decomposition rates coincide with turnover from fungal-dominated wood decomposer communities in cooler forests to codomination by fungi and termites in warmer regions. A key question for projecting forest dynamics is therefore whether temperature effects on wood decomposition arise primarily because warmer conditions facilitate faster decomposer metabolism, or are also influenced indirectly by belowground community turnover (e.g., termites exert additional influence beyond fungal-plus-bacterial mediated decomposition). To test between these possibilities, we simulate standing dead trees with untreated wooden posts and follow them in the field across 5 yr at 12 sites, before measuring buried, soil-air interface and aerial post sections to quantify wood decomposition and organism activities. High termite activities at the warmer sites are associated with rates of postfall that are three times higher than at the cooler sites. Termites primarily consume buried wood, with decomposition rates greatest where termite activities are highest. However, where higher microbial and termite activities co-occur, they appear to compensate for one another first, and then to slow decomposition rates at their highest activities, suggestive of interference competition. If the range of microbial and termite codomination of wood decomposer communities expands under climate warming, our data suggest that expansion will accelerate snag fall with consequent effects on forest carbon cycling and biodiversity in forests previously dominated by microbial decomposers.


Assuntos
Florestas , Madeira , Ciclo do Carbono , Ecossistema , Árvores
3.
Ecol Lett ; 11(12): 1316-27, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19046360

RESUMO

In the short-term heterotrophic soil respiration is strongly and positively related to temperature. In the long-term, its response to temperature is uncertain. One reason for this is because in field experiments increases in respiration due to warming are relatively short-lived. The explanations proposed for this ephemeral response include depletion of fast-cycling, soil carbon pools and thermal adaptation of microbial respiration. Using a > 15 year soil warming experiment in a mid-latitude forest, we show that the apparent 'acclimation' of soil respiration at the ecosystem scale results from combined effects of reductions in soil carbon pools and microbial biomass, and thermal adaptation of microbial respiration. Mass-specific respiration rates were lower when seasonal temperatures were higher, suggesting that rate reductions under experimental warming likely occurred through temperature-induced changes in the microbial community. Our results imply that stimulatory effects of global temperature rise on soil respiration rates may be lower than currently predicted.


Assuntos
Adaptação Fisiológica/fisiologia , Temperatura Alta , Microbiologia do Solo , Biomassa , Análise de Regressão , Estações do Ano , Solo/análise
4.
Ecol Appl ; 17(4): 1198-212, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17555228

RESUMO

The composition and successional status of a forest affect carbon storage and net ecosystem productivity, yet it remains unclear whether elevated atmospheric carbon dioxide (CO2) will impact rates and trajectories of forest succession. We examined how CO2 enrichment (+200 microL CO2/L air differential) affects forest succession through growth and survivorship of tree seedlings, as part of the Duke Forest free-air CO2 enrichment (FACE) experiment in North Carolina, USA. We planted 2352 seedlings of 14 species in the low light forest understory and determined effects of elevated CO2 on individual plant growth, survival, and total sample biomass accumulation, an integrator of plant growth and survivorship over time, for six years. We used a hierarchical Bayes framework to accommodate the uncertainty associated with the availability of light and the variability in growth among individual plants. We found that most species did not exhibit strong responses to CO2. Ulmus alata (+21%), Quercus alba (+9.5%), and nitrogen-fixing Robinia pseudoacacia (+230%) exhibited greater mean annual relative growth rates under elevated CO2 than under ambient conditions. The effects of CO2 were small relative to variability within populations; however, some species grew better under low light conditions when exposed to elevated CO2 than they did under ambient conditions. These species include shade-intolerant Liriodendron tulipifera and Liquidambar styraciflua, intermediate-tolerant Quercus velutina, and shade-tolerant Acer barbatum, A. rubrum, Prunus serotina, Ulmus alata, and Cercis canadensis. Contrary to our expectation, shade-intolerant trees did not survive better with CO2 enrichment, and population-scale responses to CO2 were influenced by survival probabilities in low light. CO2 enrichment did not increase rates of sample biomass accumulation for most species, but it did stimulate biomass growth of shade-tolerant taxa, particularly Acer barbatum and Ulmus alata. Our data suggest a small CO2 fertilization effect on tree productivity, and the possibility of reduced carbon accumulation rates relative to today's forests due to changes in species composition.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Árvores , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
5.
Glob Chang Biol ; 19(7): 2001-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23529980

RESUMO

Forest regeneration following disturbance is a key ecological process, influencing forest structure and function, species assemblages, and ecosystem-climate interactions. Climate change may alter forest recovery dynamics or even prevent recovery, triggering feedbacks to the climate system, altering regional biodiversity, and affecting the ecosystem services provided by forests. Multiple lines of evidence - including global-scale patterns in forest recovery dynamics; forest responses to experimental manipulation of CO2 , temperature, and precipitation; forest responses to the climate change that has already occurred; ecological theory; and ecosystem and earth system models - all indicate that the dynamics of forest recovery are sensitive to climate. However, synthetic understanding of how atmospheric CO2 and climate shape trajectories of forest recovery is lacking. Here, we review these separate lines of evidence, which together demonstrate that the dynamics of forest recovery are being impacted by increasing atmospheric CO2 and changing climate. Rates of forest recovery generally increase with CO2 , temperature, and water availability. Drought reduces growth and live biomass in forests of all ages, having a particularly strong effect on seedling recruitment and survival. Responses of individual trees and whole-forest ecosystems to CO2 and climate manipulations often vary by age, implying that forests of different ages will respond differently to climate change. Furthermore, species within a community typically exhibit differential responses to CO2 and climate, and altered community dynamics can have important consequences for ecosystem function. Age- and species-dependent responses provide a mechanism by which climate change may push some forests past critical thresholds such that they fail to recover to their previous state following disturbance. Altered dynamics of forest recovery will result in positive and negative feedbacks to climate change. Future research on this topic and corresponding improvements to earth system models will be a key to understanding the future of forests and their feedbacks to the climate system.


Assuntos
Mudança Climática , Ecossistema , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Biodiversidade , Agricultura Florestal , Dinâmica Populacional
6.
Tree Physiol ; 31(7): 707-17, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21813516

RESUMO

Examining the responses of root standing crop (biomass and necromass) and chemistry to soil warming is crucial for understanding root dynamics and functioning in the face of global climate change. We assessed the standing crop, total nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over the growing season after 6 years of experimental soil warming in a temperate deciduous forest in 2008. Roots were sorted into four different categories: live and dead fine roots (≤1mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5% (378.4 vs. 658.5 g m(-2)) lower than in the control area, while live root standing crop in the warmed area was 62% lower than in the control area. Soil net N mineralization over the growing season increased by 79.4% in the warmed relative to the control area. Soil warming did not significantly change the concentrations of C and C compounds (sugar, starch, hemicellulose, cellulose and lignin) in the four root categories. However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7 vs. 12.4 mg g(-1)) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control area. The increase in N concentration in the live fine roots could be attributed to the increase in soil N availability due to soil warming. Net N mineralization was negatively correlated with both live and dead fine roots in the mineral soil that is home to the majority of roots, suggesting that soil warming increases N mineralization, decreases fine root biomass and thus decreases C allocation belowground.


Assuntos
Biomassa , Mudança Climática , Compostos de Nitrogênio/análise , Compostos Orgânicos/análise , Raízes de Plantas/crescimento & desenvolvimento , Temperatura Alta , Raízes de Plantas/química , Solo/química , Árvores/química , Árvores/crescimento & desenvolvimento
7.
Proc Natl Acad Sci U S A ; 103(24): 9086-9, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16754866

RESUMO

Contact with poison ivy (Toxicodendron radicans) is one of the most widely reported ailments at poison centers in the United States, and this plant has been introduced throughout the world, where it occurs with other allergenic members of the cashew family (Anacardiaceae). Approximately 80% of humans develop dermatitis upon exposure to the carbon-based active compound, urushiol. It is not known how poison ivy might respond to increasing concentrations of atmospheric carbon dioxide (CO(2)), but previous work done in controlled growth chambers shows that other vines exhibit large growth enhancement from elevated CO(2). Rising CO(2) is potentially responsible for the increased vine abundance that is inhibiting forest regeneration and increasing tree mortality around the world. In this 6-year study at the Duke University Free-Air CO(2) Enrichment experiment, we show that elevated atmospheric CO(2) in an intact forest ecosystem increases photosynthesis, water use efficiency, growth, and population biomass of poison ivy. The CO(2) growth stimulation exceeds that of most other woody species. Furthermore, high-CO(2) plants produce a more allergenic form of urushiol. Our results indicate that Toxicodendron taxa will become more abundant and more "toxic" in the future, potentially affecting global forest dynamics and human health.


Assuntos
Biomassa , Dióxido de Carbono/metabolismo , Dermatite por Toxicodendron , Toxicodendron/toxicidade , Catecóis/química , Catecóis/imunologia , Efeito Estufa , Humanos , Toxicodendron/química , Toxicodendron/crescimento & desenvolvimento , Árvores , Estados Unidos
8.
New Phytol ; 167(1): 207-18, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15948843

RESUMO

By altering foliage quality, exposure to elevated levels of atmospheric CO(2) potentially affects the amount of herbivore damage experienced by plants. Here, we quantified foliar carbon (C) and nitrogen (N) content, C : N ratio, phenolic levels, specific leaf area (SLA) and the amount of leaf tissue damaged by chewing insects for 12 hardwood tree species grown in plots exposed to elevated CO(2) (ambient plus 200 microl l(-1)) using free-air CO(2) enrichment (FACE) over 3 yr. The effects of elevated CO(2) varied considerably by year and across species. Elevated CO(2) decreased herbivore damage across 12 species in 1 yr but had no detectable effect in others. Decreased damage may have been related to lower average foliar N concentration and SLA and increased C : N ratio and phenolic content for some species under elevated compared with ambient CO(2). It remains unclear how these changes in leaf properties affect herbivory. Damage to the leaves of hardwood trees by herbivorous insects may be reduced in the future as the concentration of CO(2) continues to increase, perhaps altering the trophic structure of forest ecosystems.


Assuntos
Dióxido de Carbono/farmacologia , Insetos/efeitos dos fármacos , Folhas de Planta/parasitologia , Árvores/parasitologia , Animais , Carbono/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Insetos/fisiologia , Nitrogênio/metabolismo , Taninos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA